
Keon Jae Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1197135/publications.pdf Version: 2024-02-01

KEONLAFLEE

#	Article	IF	CITATIONS
1	Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Materials, 2006, 5, 33-38.	13.3	1,348
2	Piezoelectric BaTiO ₃ Thin Film Nanogenerator on Plastic Substrates. Nano Letters, 2010, 10, 4939-4943.	4.5	711
3	Highlyâ€Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates. Advanced Materials, 2014, 26, 2514-2520.	11.1	690
4	Flexible Nanocomposite Generator Made of BaTiO ₃ Nanoparticles and Graphitic Carbons. Advanced Materials, 2012, 24, 2999-3004.	11.1	601
5	Selfâ€Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMNâ€PT Piezoelectric Energy Harvester. Advanced Materials, 2014, 26, 4880-4887.	11.1	558
6	Selfâ€Powered Realâ€Time Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors. Advanced Materials, 2017, 29, 1702308.	11.1	495
7	A Hyperâ€Stretchable Elasticâ€Composite Energy Harvester. Advanced Materials, 2015, 27, 2866-2875.	11.1	350
8	Topographically-Designed Triboelectric Nanogenerator via Block Copolymer Self-Assembly. Nano Letters, 2014, 14, 7031-7038.	4.5	310
9	Wireless smart contact lens for diabetic diagnosis and therapy. Science Advances, 2020, 6, eaba3252.	4.7	255
10	Flexible Memristive Memory Array on Plastic Substrates. Nano Letters, 2011, 11, 5438-5442.	4.5	250
11	Flexible Piezoelectric Thinâ€Film Energy Harvesters and Nanosensors for Biomedical Applications. Advanced Healthcare Materials, 2015, 4, 646-658.	3.9	249
12	Largeâ€Area and Flexible Leadâ€Free Nanocomposite Generator Using Alkaline Niobate Particles and Metal Nanorod Filler. Advanced Functional Materials, 2014, 24, 2620-2629.	7.8	211
13	Flexible and Largeâ€Area Nanocomposite Generators Based on Lead Zirconate Titanate Particles and Carbon Nanotubes. Advanced Energy Materials, 2013, 3, 1539-1544.	10.2	210
14	Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy and Environmental Science, 2015, 8, 2677-2684.	15.6	207
15	Flashâ€Induced Selfâ€Limited Plasmonic Welding of Silver Nanowire Network for Transparent Flexible Energy Harvester. Advanced Materials, 2017, 29, 1603473.	11.1	207
16	High-Performance Flexible Thermoelectric Power Generator Using Laser Multiscanning Lift-Off Process. ACS Nano, 2016, 10, 10851-10857.	7.3	199
17	Self-powered fully-flexible light-emitting system enabled by flexible energy harvester. Energy and Environmental Science, 2014, 7, 4035-4043.	15.6	179
18	Selfâ€Powered Wireless Sensor Node Enabled by an Aerosolâ€Deposited PZT Flexible Energy Harvester. Advanced Energy Materials, 2016, 6, 1600237.	10.2	179

#	Article	IF	CITATIONS
19	Flexible Inorganic Piezoelectric Acoustic Nanosensors for Biomimetic Artificial Hair Cells. Advanced Functional Materials, 2014, 24, 6914-6921.	7.8	176
20	Laser Irradiation of Metal Oxide Films and Nanostructures: Applications and Advances. Advanced Materials, 2018, 30, e1705148.	11.1	170
21	In Vivo Selfâ€Powered Wireless Transmission Using Biocompatible Flexible Energy Harvesters. Advanced Functional Materials, 2017, 27, 1700341.	7.8	160
22	Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing. Advanced Materials, 2020, 32, e1904020.	11.1	155
23	High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates. IEEE Electron Device Letters, 2006, 27, 460-462.	2.2	154
24	Laser–Material Interactions for Flexible Applications. Advanced Materials, 2017, 29, 1606586.	11.1	132
25	Micro Lightâ€Emitting Diodes for Display and Flexible Biomedical Applications. Advanced Functional Materials, 2019, 29, 1808075.	7.8	132
26	Water-resistant flexible GaN LED on a liquid crystal polymer substrate for implantable biomedical applications. Nano Energy, 2012, 1, 145-151.	8.2	123
27	Laser Crystallization of Organic–Inorganic Hybrid Perovskite Solar Cells. ACS Nano, 2016, 10, 7907-7914.	7.3	123
28	Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Materials, 2017, 5, .	2.2	121
29	Machine learning-based self-powered acoustic sensor for speaker recognition. Nano Energy, 2018, 53, 658-665.	8.2	121
30	Performance-enhanced triboelectric nanogenerator enabled by wafer-scale nanogrates of multistep pattern downscaling. Nano Energy, 2017, 35, 415-423.	8.2	120
31	Achieving high-resolution pressure mapping via flexible GaN/ ZnO nanowire LEDs array by piezo-phototronic effect. Nano Energy, 2019, 58, 633-640.	8.2	120
32	Flexible Crossbar‧tructured Resistive Memory Arrays on Plastic Substrates via Inorganicâ€Based Laser Liftâ€Off. Advanced Materials, 2014, 26, 7480-7487.	11.1	118
33	Skinâ€Like Oxide Thinâ€Film Transistors for Transparent Displays. Advanced Functional Materials, 2016, 26, 6170-6178.	7.8	118
34	A Reconfigurable Rectified Flexible Energy Harvester via Solid‣tate Single Crystal Grown PMN–PZT. Advanced Energy Materials, 2015, 5, 1500051.	10.2	116
35	A flexible energy harvester based on a lead-free and piezoelectric BCTZ nanoparticle–polymer composite. Nanoscale, 2016, 8, 17632-17638.	2.8	114
36	Self-powered flexible inorganic electronic system. Nano Energy, 2015, 14, 111-125.	8.2	110

#	Article	IF	CITATIONS
37	A Printable Form of Single-Crystalline Gallium Nitride for Flexible Optoelectronic Systems. Small, 2005, 1, 1164-1168.	5.2	109
38	<i>In Vivo</i> Silicon-Based Flexible Radio Frequency Integrated Circuits Monolithically Encapsulated with Biocompatible Liquid Crystal Polymers. ACS Nano, 2013, 7, 4545-4553.	7.3	108
39	Stretchable piezoelectric nanocomposite generator. Nano Convergence, 2016, 3, 12.	6.3	104
40	Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Science Advances, 2021, 7, .	4.7	104
41	Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer. ACS Nano, 2016, 10, 3435-3442.	7.3	102
42	Plasmonicâ€īuned Flash Cu Nanowelding with Ultrafast Photochemicalâ€Reducing and Interlocking on Flexible Plastics. Advanced Functional Materials, 2017, 27, 1701138.	7.8	98
43	Novel Electronics for Flexible and Neuromorphic Computing. Advanced Functional Materials, 2018, 28, 1801690.	7.8	94
44	Reliable Control of Filament Formation in Resistive Memories by Self-Assembled Nanoinsulators Derived from a Block Copolymer. ACS Nano, 2014, 8, 9492-9502.	7.3	93
45	Performance Enhancement of Electronic and Energy Devices via Block Copolymer Selfâ€Assembly. Advanced Materials, 2015, 27, 3982-3998.	11.1	91
46	Reliable Memristive Switching Memory Devices Enabled by Densely Packed Silver Nanocone Arrays as Electric-Field Concentrators. ACS Nano, 2016, 10, 9478-9488.	7.3	90
47	Modulation of surface physics and chemistry in triboelectric energy harvesting technologies. Science and Technology of Advanced Materials, 2019, 20, 758-773.	2.8	90
48	Monolithic Flexible Vertical GaN Lightâ€Emitting Diodes for a Transparent Wireless Brain Optical Stimulator. Advanced Materials, 2018, 30, e1800649.	11.1	88
49	Performance improvement of flexible piezoelectric energy harvester for irregular human motion with energy extraction enhancement circuit. Nano Energy, 2019, 58, 211-219.	8.2	88
50	Flexible highly-effective energy harvester via crystallographic and computational control of nanointerfacial morphotropic piezoelectric thin film. Nano Research, 2017, 10, 437-455.	5.8	86
51	Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon. IEEE Electron Device Letters, 2008, 29, 73-76.	2.2	85
52	Basilar membrane-inspired self-powered acoustic sensor enabled by highly sensitive multi tunable frequency band. Nano Energy, 2018, 53, 198-205.	8.2	85
53	Wireless powered wearable micro light-emitting diodes. Nano Energy, 2019, 55, 454-462.	8.2	83
54	Flash Light Millisecond Selfâ€Assembly of High χ Block Copolymers for Waferâ€Scale Subâ€10 nm Nanopatterning. Advanced Materials, 2017, 29, 1700595.	11.1	78

#	Article	IF	CITATIONS
55	Laser-induced phase separation of silicon carbide. Nature Communications, 2016, 7, 13562.	5.8	75
56	Self-Assembled Incorporation of Modulated Block Copolymer Nanostructures in Phase-Change Memory for Switching Power Reduction. ACS Nano, 2013, 7, 2651-2658.	7.3	74
57	Flexible One Diode-One Phase Change Memory Array Enabled by Block Copolymer Self-Assembly. ACS Nano, 2015, 9, 4120-4128.	7.3	74
58	Self-powered flexible electronics beyond thermal limits. Nano Energy, 2019, 56, 531-546.	8.2	74
59	Trichogenic Photostimulation Using Monolithic Flexible Vertical AlGaInP Light-Emitting Diodes. ACS Nano, 2018, 12, 9587-9595.	7.3	72
60	Optogenetic control of body movements via flexible vertical light-emitting diodes on brain surface. Nano Energy, 2018, 44, 447-455.	8.2	68
61	TFT Channel Materials for Display Applications: From Amorphous Silicon to Transition Metal Dichalcogenides. Advanced Materials, 2020, 32, e1907166.	11.1	58
62	Optogenetic brain neuromodulation by stray magnetic field via flash-enhanced magneto-mechano-triboelectric nanogenerator. Nano Energy, 2020, 75, 104951.	8.2	54
63	Simultaneous Roll Transfer and Interconnection of Flexible Silicon NAND Flash Memory. Advanced Materials, 2016, 28, 8371-8378.	11.1	53
64	Laser-Induced Solid-Phase Doped Graphene. ACS Nano, 2014, 8, 7671-7677.	7.3	48
65	Electrical Biomolecule Detection Using Nanopatterned SiliconÂvia Block Copolymer Lithography. Small, 2014, 10, 337-343.	5.2	48
66	Versatile Transfer of an Ultralong and Seamless Nanowire Array Crystallized at High Temperature for Use in High-Performance Flexible Devices. ACS Nano, 2017, 11, 1520-1529.	7.3	48
67	Optogenetic Mapping of Functional Connectivity in Freely Moving Mice via Insertable Wrapping Electrode Array Beneath the Skull. ACS Nano, 2016, 10, 2791-2802.	7.3	46
68	Flexible one diode–one resistor resistive switching memory arrays on plastic substrates. RSC Advances, 2014, 4, 20017-20023.	1.7	40
69	Flexible wireless powered drug delivery system for targeted administration on cerebral cortex. Nano Energy, 2018, 51, 102-112.	8.2	37
70	Flashâ€Induced Stretchable Cu Conductor via Multiscaleâ€Interfacial Couplings. Advanced Science, 2018, 5, 1801146.	5.6	36
71	Flexible Self-Charging, Ultrafast, High-Power-Density Ceramic Capacitor System. ACS Energy Letters, 0, , 1383-1391.	8.8	36
72	Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse. Nature Communications, 2022, 13, 2811.	5.8	35

Keon Jae Lee

#	Article	IF	CITATIONS
73	Flash-induced ultrafast recrystallization of perovskite for flexible light-emitting diodes. Nano Energy, 2019, 61, 236-244.	8.2	34
74	Flexible Crossbar‧tructured Phase Change Memory Array via Moâ€Based Interfacial Physical Liftâ€Off. Advanced Functional Materials, 2019, 29, 1806338.	7.8	31
75	Progress in Brainâ€Compatible Interfaces with Soft Nanomaterials. Advanced Materials, 2020, 32, e1907522.	11.1	29
76	Hierarchically Surfaceâ€Textured Ultrastable Hybrid Film for Largeâ€Scale Triboelectric Nanogenerators. Advanced Functional Materials, 2020, 30, 2005610.	7.8	28
77	Janus Graphene Liquid Crystalline Fiber with Tunable Properties Enabled by Ultrafast Flash Reduction. Small, 2019, 15, e1901529.	5.2	27
78	Self-Structured Conductive Filament Nanoheater for Chalcogenide Phase Transition. ACS Nano, 2015, 9, 6587-6594.	7.3	26
79	Tailoring the Magnetoelectric Properties of Pb(Zr,Ti)O ₃ Film Deposited on Amorphous Metglas Foil by Laser Annealing. Journal of the American Ceramic Society, 2016, 99, 2680-2687.	1.9	26
80	Xenon Flash Lampâ€induced Ultrafast Multilayer Graphene Growth. Particle and Particle Systems Characterization, 2017, 34, 1600429.	1.2	26
81	An Ionic Capacitor for Integrated Iontronic Circuits. Advanced Materials Technologies, 2019, 4, 1800494.	3.0	24
82	Flashlight-material interaction for wearable and flexible electronics. Materials Today, 2021, 51, 525-551.	8.3	23
83	Memory-centric neuromorphic computing for unstructured data processing. Nano Research, 2021, 14, 3126-3142.	5.8	21
84	Laser lift-off of GaN thin film and its application to the flexible light emitting diodes. Proceedings of SPIE, 2012, , .	0.8	19
85	Deep learning-based noise robust flexible piezoelectric acoustic sensors for speech processing. Nano Energy, 2022, 101, 107610.	8.2	17
86	Nanotransplantation Printing of Crystallographic-Orientation-Controlled Single-Crystalline Nanowire Arrays on Diverse Surfaces. ACS Nano, 2017, 11, 11642-11652.	7.3	16
87	Flash-welded ultraflat silver nanowire network for flexible organic light-emitting diode and triboelectric tactile sensor. APL Materials, 2021, 9, .	2.2	16
88	A Flashâ€Induced Robust Cu Electrode on Glass Substrates and Its Application for Thinâ€Film μ LEDs. Advanced Materials, 2021, 33, e2007186.	11.1	15
89	Self-Powered Flexible Full-Color Display via Dielectric-Tuned Hybrimer Triboelectric Nanogenerators. ACS Energy Letters, 2021, 6, 4097-4107.	8.8	15
90	Unconventional Inorganicâ€Based Memristive Devices for Advanced Intelligent Systems. Advanced Materials Technologies, 2019, 4, 1900080.	3.0	14

#	Article	IF	CITATIONS
91	Nanogenerators: Highlyâ€Efficient, Flexible Piezoelectric PZT Thin Film Nanogenerator on Plastic Substrates (Adv. Mater. 16/2014). Advanced Materials, 2014, 26, 2450-2450.	11.1	9
92	Siloxane Hybrid Material-Encapsulated Highly Robust Flexible μLEDs for Biocompatible Lighting Applications. ACS Applied Materials & Interfaces, 2022, 14, 28258-28269.	4.0	9
93	Current density enhancement nano-contact phase-change memory for low writing current. Applied Physics Letters, 2013, 103, .	1.5	8
94	Speech Recognition: Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing (Adv. Mater. 35/2020). Advanced Materials, 2020, 32, 2070259.	11.1	8
95	Biointegrated flexible inorganic light emitting diodes. Nanobiosensors in Disease Diagnosis, 2012, , 5.	0.0	7
96	Nanocomposites: Flexible and Largeâ€Area Nanocomposite Generators Based on Lead Zirconate Titanate Particles and Carbon Nanotubes (Adv. Energy Mater. 12/2013). Advanced Energy Materials, 2013, 3, 1530-1530.	10.2	7
97	Autonomous Microcapillary Drug Delivery System Selfâ€Powered by a Flexible Energy Harvester. Advanced Materials Technologies, 2021, 6, 2100526.	3.0	7
98	ACF-packaged ultrathin Si-based flexible NAND flash memory. , 2015, , .		6
99	Metastable quantum dot for photoelectric devices via flash-induced one-step sequential self-formation. Nano Energy, 2021, 84, 105889.	8.2	6
100	Universal Patterning for 2D Van der Waals Materials via Direct Optical Lithography. Advanced Functional Materials, 2021, 31, 2105302.	7.8	6
101	Implantable Micro-Light-Emitting Diode (µLED)-based optogenetic interfaces toward human applications. Advanced Drug Delivery Reviews, 2022, 187, 114399.	6.6	6
102	Flexible micro light-emitting diodes for wearable applications. , 2019, , .		5
103	Nanogenerators: Self-Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN-PT Piezoelectric Energy Harvester (Adv. Mater. 28/2014). Advanced Materials, 2014, 26, 4754-4754.	11.1	4
104	Selfâ€Powered Devices: Selfâ€Powered Wireless Sensor Node Enabled by an Aerosolâ€Deposited PZT Flexible Energy Harvester (Adv. Energy Mater. 13/2016). Advanced Energy Materials, 2016, 6, .	10.2	4
105	Piezoelectric Sensors: Selfâ€Powered Realâ€īme Arterial Pulse Monitoring Using Ultrathin Epidermal Piezoelectric Sensors (Adv. Mater. 37/2017). Advanced Materials, 2017, 29, .	11.1	4
106	Light-material interfaces for self-powered optoelectronics. Journal of Materials Chemistry A, 2021, 9, 25694-25705.	5.2	4
107	Transparent Displays: Skin-Like Oxide Thin-Film Transistors for Transparent Displays (Adv. Funct.) Tj ETQq1 1 0.78	4314 rgB1 7.8	Г /Overlock
	Light-Emitting Diodes: Monolithic Elexible Vertical GaN Light-Emitting Diodes for a Transparent		

¹⁰⁸ Light-Emitting Diodes: Monolithic Flexible Vertical GaN Light-Emitting Diodes for a Transparent Wireless Brain Optical Stimulator (Adv. Mater. 28/2018). Advanced Materials, 2018, 30, 1870208. 11.1 2

#	Article	IF	CITATIONS
109	Neuromedical Devices: Progress in Brainâ€Compatible Interfaces with Soft Nanomaterials (Adv. Mater.) Tj ETQq1	1 0.78431 11.1	4 ₂ rgBT /Ov
110	Flexible Electronics: Flexible Crossbar-Structured Resistive Memory Arrays on Plastic Substrates via Inorganic-Based Laser Lift-Off (Adv. Mater. 44/2014). Advanced Materials, 2014, 26, 7418-7418.	11.1	1
111	Siloxane Hybrid Materials: Hierarchically Surfaceâ€Textured Ultrastable Hybrid Film for Largeâ€Scale Triboelectric Nanogenerators (Adv. Funct. Mater. 49/2020). Advanced Functional Materials, 2020, 30, 2070327.	7.8	1
112	Multidisciplinary Materials Research in KAIST Over the Last 50 Years. Advanced Materials, 2020, 32, e2000696.	11.1	1
113	Low Power Phase Change Memory via Block Copolymer Self-assembly Technology. Materials Research Society Symposia Proceedings, 2013, 1556, 1.	0.1	Ο
114	Sensors: Flexible Inorganic Piezoelectric Acoustic Nanosensors for Biomimetic Artificial Hair Cells (Adv. Funct. Mater. 44/2014). Advanced Functional Materials, 2014, 24, 6898-6898.	7.8	0