Ming Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11971092/publications.pdf

Version: 2024-02-01

17	1,041	12	17
papers	citations	h-index	g-index
17	17	17	1861 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Measuring Ensemble-Averaged Surface-Enhanced Raman Scattering in the Hotspots of Colloidal Nanoparticle Dimers and Trimers. Journal of the American Chemical Society, 2010, 132, 3644-3645.	6.6	382
2	Reducing the Symmetry of Bimetallic Au@Ag Nanoparticles by Exploiting Eccentric Polymer Shells. Journal of the American Chemical Society, 2010, 132, 9537-9539.	6.6	121
3	Highly controlled core/shell structures: tunable conductive polymer shells on gold nanoparticles and nanochains. Journal of Materials Chemistry, 2009, 19, 3286.	6.7	118
4	Fluorinated Pickering Emulsions Impede Interfacial Transport and Form Rigid Interface for the Growth of Anchorage-Dependent Cells. ACS Applied Materials & Samp; Interfaces, 2014, 6, 21446-21453.	4.0	74
5	Optofluidic ultrahigh-throughput detection of fluorescent drops. Lab on A Chip, 2015, 15, 1417-1423.	3.1	57
6	3D dendritic gold nanostructures: seeded growth of a multi-generation fractal architecture. Chemical Communications, 2010, 46, 7112.	2.2	51
7	Fluorinated Pickering Emulsions with Nonadsorbing Interfaces for Droplet-based Enzymatic Assays. Analytical Chemistry, 2015, 87, 7938-7943.	3.2	42
8	Phenotyping antibiotic resistance with single-cell resolution for the detection of heteroresistance. Sensors and Actuators B: Chemical, 2018, 270, 396-404.	4.0	41
9	Low energy emulsion-based fermentation enabling accelerated methane mass transfer and growth of poly(3-hydroxybutyrate)-accumulating methanotrophs. Bioresource Technology, 2016, 207, 302-307.	4.8	35
10	Seeded growth of two-dimensional dendritic gold nanostructures. Chemical Communications, 2012, 48, 1440-1442.	2.2	30
11	Modified Microâ€Emulsion Synthesis of Highly Dispersed Al/PVDF Composites with Enhanced Combustion Properties. Advanced Engineering Materials, 2019, 21, 1801330.	1.6	28
12	Surface-functionalizable amphiphilic nanoparticles for pickering emulsions with designer fluid–fluid interfaces. RSC Advances, 2016, 6, 39926-39932.	1.7	24
13	Amphiphilic nanoparticles suppress droplet break-up in a concentrated emulsion flowing through a narrow constriction. Biomicrofluidics, 2017, 11, 034117.	1.2	12
14	Methods to coalesce fluorinated Pickering emulsions. Analytical Methods, 2017, 9, 4622-4629.	1.3	8
15	Actuating Fluid–Fluid Interfaces for the Reconfiguration of Light. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 444-455.	1.9	7
16	Encapsulation of Single Nanoparticle in Fast-Evaporating Micro-droplets Prevents Particle Agglomeration in Nanocomposites. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26602-26609.	4.0	6
17	High-Efficiency and High-Throughput On-Chip Exchange of the Continuous Phase in Droplet Microfluidic Systems. SLAS Technology, 2017, 22, 529-535.	1.0	5