Minseok Seo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11970712/publications.pdf

Version: 2024-02-01

394286 610775 3,291 24 19 24 citations h-index g-index papers 26 26 26 3583 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition. Angewandte Chemie - International Edition, 2005, 44, 724-728.	7.2	700
2	Janus and Ternary Particles Generated by Microfluidic Synthesis:Â Design, Synthesis, and Self-Assembly. Journal of the American Chemical Society, 2006, 128, 9408-9412.	6.6	692
3	Polymer Particles with Various Shapes and Morphologies Produced in Continuous Microfluidic Reactors. Journal of the American Chemical Society, 2005, 127, 8058-8063.	6.6	503
4	Continuous Microfluidic Reactors for Polymer Particles. Langmuir, 2005, 21, 11614-11622.	1.6	244
5	Microfluidic consecutive flow-focusing droplet generators. Soft Matter, 2007, 3, 986.	1.2	230
6	Microfluidic Assembly of Monodisperse, Nanoparticle-Incorporated Perfluorocarbon Microbubbles for Medical Imaging and Therapy. Langmuir, 2010, 26, 13855-13860.	1.6	104
7	Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft Matter, 2008, 4, 258-262.	1.2	93
8	Microfluidics:Â From Dynamic Lattices to Periodic Arrays of Polymer Disks. Langmuir, 2005, 21, 4773-4775.	1.6	81
9	Screening of the Effect of Surface Energy of Microchannels on Microfluidic Emulsification. Langmuir, 2007, 23, 8010-8014.	1.6	78
10	Generation of Monodisperse Particles by Using Microfluidics: Control over Size, Shape, and Composition. Angewandte Chemie - International Edition, 2005, 44, 3799-3799.	7.2	55
11	Optical studies of vaporization and stability of fluorescently labelled perfluorocarbon droplets. Physics in Medicine and Biology, 2012, 57, 7205-7217.	1.6	54
12	Silica-Coated Quantum Dots for Optical Evaluation of Perfluorocarbon Droplet Interactions with Cells. Langmuir, 2011, 27, 15024-15033.	1.6	45
13	Nanofibrillar Stimulusâ€Responsive Cholesteric Microgels with Catalytic Properties. Angewandte Chemie - International Edition, 2016, 55, 14014-14018.	7.2	35
14	3Dâ€Printed Microfluidic Devices for Materials Science. Advanced Materials Technologies, 2018, 3, 1800068.	3.0	33
15	Intracellular Growth of Nanoscale Perfluorocarbon Droplets for Enhanced Ultrasound-Induced Phase-Change Conversion. Ultrasound in Medicine and Biology, 2012, 38, 1799-1810.	0.7	28
16	Thermoplastic microfluidic devices for targeted chemical and biological applications. RSC Advances, 2017, 7, 2884-2889.	1.7	27
17	Monodisperse, Submicrometer Droplets via Condensation of Microfluidicâ€Generated Gas Bubbles. Small, 2012, 8, 2704-2714.	5.2	25
18	Size reduction of cosolvent-infused microbubbles to form acoustically responsive monodisperse perfluorocarbon nanodroplets. Lab on A Chip, 2015, 15, 3581-3590.	3.1	24

#	ARTICLE	IF	CITATION
19	Direct Incorporation of Lipophilic Nanoparticles into Monodisperse Perfluorocarbon Nanodroplets via Solvent Dissolution from Microfluidic-Generated Precursor Microdroplets. Langmuir, 2014, 30, 12465-12473.	1.6	17
20	18 F-Labeled perfluorocarbon droplets for positron emission tomography imaging. Nuclear Medicine and Biology, 2017, 54, 27-33.	0.3	12
21	Nanofibrillar Stimulusâ€Responsive Cholesteric Microgels with Catalytic Properties. Angewandte Chemie, 2016, 128, 14220-14224.	1.6	9
22	Response of adsorbed layers of hydroxypropyl cellulose to variations in ambient humidity. Colloid and Polymer Science, 2002, 280, 607-615.	1.0	5
23	Optical fluorescence studies of perfluorocarbon droplet vaporization., 2011,,.		2
24	Diethyl ether as a drug-loading and sizereducing cosolvent to produce monodisperse, nanoscale perfluorocarbon agents., 2015,,.		2