Yueping Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/119699/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Single atom Fe-dispersed graphitic carbon nitride (g-C3N4) as a highly efficient peroxymonosulfate photocatalytic activator for sulfamethoxazole degradation. Chemical Engineering Journal, 2022, 430, 132937.	12.7	78
2	Calcium-modified granular attapulgite removed phosphorus from synthetic wastewater containing low-strength phosphorus. Chemosphere, 2022, 296, 133898.	8.2	26
3	Analysis of the simultaneous adsorption mechanism of ammonium and phosphate on magnesium-modified biochar and the slow release effect of fertiliser. Biochar, 2022, 4, 1.	12.6	34
4	A triple-chamber microbial fuel cell enabled to synchronously recover iron and sulfur elements from sulfide tailings. Journal of Hazardous Materials, 2021, 401, 123307.	12.4	12
5	Thermally treated candle soot as a novel catalyst for hydrogen peroxide in-situ production enhancement in the bio-electro-Fenton system. Chemosphere, 2021, 262, 127839.	8.2	13
6	Synthesis of Fe0/Fe3O4@porous carbon through a facile heat treatment of iron-containing candle soots for peroxymonosulfate activation and efficient degradation of sulfamethoxazole. Journal of Hazardous Materials, 2021, 411, 124952.	12.4	80
7	Pathway analysis of the biodegradation of lignin by Brevibacillus thermoruber. Bioresource Technology, 2021, 341, 125875.	9.6	25
8	Effect of anaerobic sludge on the bioelectricity generation enhancement of bufferless single-chamber microbial fuel cells. Bioelectrochemistry, 2020, 131, 107387.	4.6	10
9	The growth process of the cake layer and membrane fouling alleviation mechanism in a MBR assisted with the self-generated electric field. Water Research, 2020, 171, 115452.	11.3	34
10	Self-generated electric field to suppress sludge production and fouling development in a membrane bioreactor for wastewater treatment. Chemosphere, 2020, 261, 128046.	8.2	10
11	Effect of heterotrophic anodic denitrification on anolyte pH control and bioelectricity generation enhancement of bufferless microbial fuel cells. Chemosphere, 2020, 257, 127251.	8.2	41
12	Fate of proteins of waste activated sludge during thermal alkali pretreatment in terms of sludge protein recovery. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	20
13	Endogenous inorganic carbon buffers accumulation and self-buffering capacity enhancement of air-cathode microbial fuel cells through anolyte recycling. Science of the Total Environment, 2019, 676, 11-17.	8.0	15
14	In situ extracting organic-bound calcium: A novel approach to mitigating organic fouling in forward osmosis treating wastewater via gradient diffusion thin-films. Water Research, 2019, 156, 102-109.	11.3	18
15	A spontaneous electric field membrane bioreactor with the innovative Cuâ€nanowires conductive microfiltration membrane for membrane fouling mitigation and pollutant removal. Water Environment Research, 2019, 91, 780-787.	2.7	11
16	EDTA-based adsorption layer for mitigating FO membrane fouling via in situ removing calcium binding with organic foulants. Journal of Membrane Science, 2019, 578, 95-102.	8.2	17
17	Effect of driving force on the performance of anaerobic osmotic membrane bioreactors: New insight into enhancing water flux of FO membrane via controlling driving force in a two-stage pattern. Journal of Membrane Science, 2019, 569, 41-47.	8.2	31
18	Insight into the distribution of metallic elements in membrane bioreactor: Influence of operational temperature and role of extracellular polymeric substances. Journal of Environmental Sciences, 2019, 76, 111-120.	6.1	9

YUEPING REN

#	Article	IF	CITATIONS
19	Enhanced bioelectricity generation of air-cathode buffer-free microbial fuel cells through short-term anolyte pH adjustment. Bioelectrochemistry, 2018, 120, 145-149.	4.6	16
20	Shell-Thickness-Dependent Biexciton Lifetime in Type I and Quasi-Type II CdSe@CdS Core/Shell Quantum Dots. Journal of Physical Chemistry C, 2018, 122, 14091-14098.	3.1	47
21	Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	6.0	14
22	Effect of binderâ€free graphene–cetyltrimethylammonium bromide anode on the performance of microbial fuel cells. Journal of Chemical Technology and Biotechnology, 2017, 92, 157-162.	3.2	7
23	Development of a novel anaerobic membrane bioreactor simultaneously integrating microfiltration and forward osmosis membranes for low-strength wastewater treatment. Journal of Membrane Science, 2017, 527, 1-7.	8.2	84
24	Effect of short-term alkaline intervention on the performance of buffer-free single-chamber microbial fuel cell. Bioelectrochemistry, 2017, 115, 41-46.	4.6	13
25	Synchronous recovery of iron and electricity using a single chamber air-cathode microbial fuel cell. RSC Advances, 2017, 7, 12503-12510.	3.6	11
26	Impacts of inorganic draw solutes on the performance of thin-film composite forward osmosis membrane in a microfiltration assisted anaerobic osmotic membrane bioreactor. RSC Advances, 2017, 7, 16057-16063.	3.6	31
27	Preparation of conductive microfiltration membrane and its performance in a coupled configuration of membrane bioreactor with microbial fuel cell. RSC Advances, 2017, 7, 20824-20832.	3.6	21
28	Behavior of copper in membrane-less sediment microbial fuel cell. Journal of Renewable and Sustainable Energy, 2017, 9, 023103.	2.0	7
29	Integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane for enhancing bio-electricity and water recovery from low-strength wastewater. Water Research, 2017, 110, 74-82.	11.3	62
30	Anolyte recycling enhanced bioelectricity generation of the buffer-free single-chamber air-cathode microbial fuel cell. Bioresource Technology, 2017, 244, 1183-1187.	9.6	15
31	Permeability recovery of fouled forward osmosis membranes by chemical cleaning during a long-term operation of anaerobic osmotic membrane bioreactors treating low-strength wastewater. Water Research, 2017, 123, 505-512.	11.3	56
32	Effect of Graphene-Graphene Oxide Modified Anode on the Performance of Microbial Fuel Cell. Nanomaterials, 2016, 6, 174.	4.1	9
33	Nanoparticle fouling and its combination with organic fouling during forward osmosis process for silver nanoparticles removal from simulated wastewater. Scientific Reports, 2016, 6, 25859.	3.3	8
34	Effect of graphite fibers on the performance of sediment microbial fuel cell. Environmental Progress and Sustainable Energy, 2016, 35, 876-881.	2.3	2
35	Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors. Bioresource Technology, 2016, 202, 50-58.	9.6	96
36	A monolithic three-dimensional macroporous graphene anode with low cost for high performance microbial fuel cells. RSC Advances, 2016, 6, 21001-21010.	3.6	23

YUEPING REN

#	Article	IF	CITATIONS
37	Impacts of sludge retention time on sludge characteristics and membrane fouling in a submerged osmotic membrane bioreactor. Bioresource Technology, 2014, 161, 340-347.	9.6	118
38	Selfâ€seeding synthesis of silver nanosheets with binary reduction in poly(vinylpyrrolidone)–sodium dodecyl sulphate aggregation microreactor. Micro and Nano Letters, 2014, 9, 726-730.	1.3	5
39	Integration of micro-filtration into osmotic membrane bioreactors to prevent salinity build-up. Bioresource Technology, 2014, 167, 116-123.	9.6	94
40	Controlled synthesis of gold nanosnakes assisted by poly(vinyl pyrrolidone)–sodium dodecyl sulphate aggregations. Journal of Experimental Nanoscience, 2013, 8, 774-781.	2.4	2
41	Effect of polyanilineâ€graphene nanosheets modified cathode on the performance of sediment microbial fuel cell. Journal of Chemical Technology and Biotechnology, 2013, 88, 1946-1950.	3.2	58
42	Influences of sludge retention time on the performance of submerged membrane bioreactors with the addition of iron ion. Desalination, 2012, 296, 24-29.	8.2	25
43	Co-effect of soft template and microwave irradiation on morphological control of gold nanobranches. Colloid and Polymer Science, 2011, 289, 1769-1776.	2.1	6
44	Room Temperature Synthesis of Gold Nanokites in Polyvinyl Alcoholâ€Sodium Dodecyl Sulfate Aggregations Aqueous Solution. Chinese Journal of Chemistry, 2011, 29, 1955-1960.	4.9	1