Natalia L Klyachko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11969888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Permeability of the Composite Magnetic Microcapsules Triggered by a Non-Heating Low-Frequency Magnetic Field. Pharmaceutics, 2022, 14, 65.	2.0	7
2	<i>In Vitro</i> / <i>In Vivo</i> Electrochemical Detection of Pt(II) Species. Analytical Chemistry, 2022, 94, 4901-4905.	3.2	12
3	Mechanisms and conditions for mechanical activation of magnetic nanoparticles by external magnetic field for biomedical applications. Journal of Magnetism and Magnetic Materials, 2022, 553, 169278.	1.0	5
4	Modulation of α-Chymotrypsin Conjugated to Magnetic Nanoparticles by the Non-Heating Low-Frequency Magnetic Field: Molecular Dynamics, Reaction Kinetics, and Spectroscopy Analysis. ACS Omega, 2022, 7, 20644-20655.	1.6	6
5	New Small-Molecule Glycoconjugates of Docetaxel and GalNAc for Targeted Delivery to Hepatocellular Carcinoma. Molecular Pharmaceutics, 2021, 18, 461-468.	2.3	21
6	Mapping mechanical properties of living cells at nanoscale using intrinsic nanopipette–sample force interactions. Nanoscale, 2021, 13, 6558-6568.	2.8	33
7	Discovery of Bivalent GalNAc-Conjugated Betulin as a Potent ASGPR-Directed Agent against Hepatocellular Carcinoma. Bioconjugate Chemistry, 2021, 32, 763-781.	1.8	12
8	Superoxide Dismutase 1 Nanoparticles (Nano-SOD1) as a Potential Drug for the Treatment of Inflammatory Eye Diseases. Biomedicines, 2021, 9, 396.	1.4	15
9	Non-Heating Alternating Magnetic Field Nanomechanical Stimulation of Biomolecule Structures via Magnetic Nanoparticles as the Basis for Future Low-Toxic Biomedical Applications. Nanomaterials, 2021, 11, 2255.	1.9	21
10	Room temperature synthesized solid solution AuFe nanoparticles and their transformation into Au/Fe Janus nanocrystals. Nanoscale, 2021, 13, 10402-10413.	2.8	8
11	Mannosylated Cationic Copolymers for Gene Delivery to Macrophages. Macromolecular Bioscience, 2021, 21, e2000371.	2.1	12
12	Macrophage-Derived Extracellular Vesicles as Drug Delivery Systems for Triple Negative Breast Cancer (TNBC) Therapy. Journal of NeuroImmune Pharmacology, 2020, 15, 487-500.	2.1	125
13	Extracellular Vesicle-Based Therapeutics: Preclinical and Clinical Investigations. Pharmaceutics, 2020, 12, 1171.	2.0	60
14	Synthesis and Evaluation of New Trivalent Ligands for Hepatocyte Targeting via the Asialoglycoprotein Receptor. Bioconjugate Chemistry, 2020, 31, 1313-1319.	1.8	11
15	Enzyme Release from Polyion Complex by Extremely Low Frequency Magnetic Field. Scientific Reports, 2020, 10, 4745.	1.6	9
16	In Vitro and In Vivo Electrochemical Measurement of Reactive Oxygen Species After Treatment with Anticancer Drugs. Analytical Chemistry, 2020, 92, 8010-8014.	3.2	58
17	Synthesis of allobetulin-based asialoglycoprotein receptor-targeted glycoconjugates. Mendeleev Communications, 2019, 29, 526-528.	0.6	1
18	Magnetic nanorods for remote disruption of lipid membranes by non-heating low frequency magnetic field. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102065.	1.7	15

NATALIA L KLYACHKO

#	Article	IF	CITATIONS
19	Magnetic liposome design for drug release systems responsive to super-low frequency alternating current magnetic field (AC MF). Journal of Colloid and Interface Science, 2019, 552, 689-700.	5.0	45
20	TPP1 Delivery to Lysosomes with Extracellular Vesicles and their Enhanced Brain Distribution in the Animal Model of Batten Disease. Advanced Healthcare Materials, 2019, 8, e1801271.	3.9	83
21	In Situ Observation of Chymotrypsin Catalytic Activity Change Actuated by Nonheating Low-Frequency Magnetic Field. ACS Nano, 2018, 12, 3190-3199.	7.3	33
22	Engineering macrophage-derived exosomes for targeted paclitaxel delivery to pulmonary metastases: in vitro and in vivo evaluations. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 195-204.	1.7	469
23	Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics. Beilstein Journal of Nanotechnology, 2018, 9, 2684-2699.	1.5	32
24	Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics. Scientific Reports, 2018, 8, 11295.	1.6	77
25	The dynamics of magnetic nanoparticles exposed to non-heating alternating magnetic field in biochemical applications: theoretical study. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	23
26	Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	47
27	Macrophages with cellular backpacks for targeted drug delivery to the brain. Biomaterials, 2017, 140, 79-87.	5.7	121
28	Superoxide Dismutase 1 Nanozyme for Treatment of Eye Inflammation. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-13.	1.9	26
29	A Chimeric LysK-Lysostaphin Fusion Enzyme Lysing Staphylococcus aureus Cells: a Study of Both Kinetics of Inactivation and Specifics of Interaction with Anionic Polymers. Applied Biochemistry and Biotechnology, 2016, 180, 544-557.	1.4	16
30	Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 655-664.	1.7	991
31	Exosomes as drug delivery vehicles for Parkinson's disease therapy. Journal of Controlled Release, 2015, 207, 18-30.	4.8	1,363
32	Bacteriophage phi11 lysin: Physicochemical characterization and comparison with phage phi80α lysin. Enzyme and Microbial Technology, 2015, 73-74, 51-58.	1.6	16
33	Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields. Journal of Controlled Release, 2015, 219, 43-60.	4.8	179
34	Macrophages offer a paradigm switch for CNS delivery of therapeutic proteins. Nanomedicine, 2014, 9, 1403-1422.	1.7	78
35	Physicochemical characterization of the staphylolytic LysK enzyme in complexes with polycationic polymers as a potent antimicrobial. Biochimie, 2013, 95, 1689-1696.	1.3	23
36	Specific Transfection of Inflamed Brain by Macrophages: A New Therapeutic Strategy for Neurodegenerative Diseases. PLoS ONE, 2013, 8, e61852.	1.1	124

NATALIA L KLYACHKO

#	Article	IF	CITATIONS
37	Changing the Enzyme Reaction Rate in Magnetic Nanosuspensions by a Nonâ€Heating Magnetic Field. Angewandte Chemie - International Edition, 2012, 51, 12016-12019.	7.2	53
38	Blood-borne macrophage–neural cell interactions hitchhike on endosome networks for cell-based nanozyme brain delivery. Nanomedicine, 2012, 7, 815-833.	1.7	51
39	Well-defined cross-linked antioxidant nanozymes for treatment of ischemic brain injury. Journal of Controlled Release, 2012, 162, 636-645.	4.8	99
40	Cross-linked antioxidant nanozymes for improved delivery to CNS. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 119-129.	1.7	75
41	Polyelectrolyte complex optimization for macrophage delivery of redox enzyme nanoparticles. Nanomedicine, 2011, 6, 25-42.	1.7	54
42	Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson's disease. Nanomedicine, 2010, 5, 379-396.	1.7	154
43	LysK, the enzyme lysing Staphylococcus aureus cells: Specific kinetic features and approaches towards stabilization. Biochimie, 2010, 92, 507-513.	1.3	38
44	pH-dependent Substrate Preference of Pig Heart Lipoamide Dehydrogenase Varies with Oligomeric State. Journal of Biological Chemistry, 2005, 280, 16106-16114.	1.6	49
45	Pressure-Induced Protein Unfolding in the Ternary System AOTâ^'Octaneâ^'Water Is Different from that in Bulk Water. Langmuir, 2005, 21, 3599-3604.	1.6	18
46	Bioorganic synthesis in reverse micelles and related systems. Current Opinion in Colloid and Interface Science, 2003, 8, 179-186.	3.4	73
47	Pressure Regulation of Malic Dehydrogenase in Reversed Micelles. Biochemical and Biophysical Research Communications, 1999, 254, 685-688.	1.0	11
48	High Hydrostatic Pressure and Enzymology. , 1999, , 423-436.		3
49	Thermobarostability of \hat{l}_{\pm} -chymotrypsin in reversed micelles of aerosol OT in octane solvated by water-glycerol mixtures. , 1998, 57, 552-556.		38
50	High-pressure stabilization of α-chymotrypsin entrapped in reversed micelles of aerosol OT in octane against thermal inactivation. FEBS Letters, 1995, 364, 98-100.	1.3	32