## David A Laird

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11969631/publications.pdf Version: 2024-02-01



ΠΑΙΛΙΡΟ

| #  | Article                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nearâ€Infrared Reflectance Spectroscopy–Principal Components Regression Analyses of Soil Properties.<br>Soil Science Society of America Journal, 2001, 65, 480-490.                                   | 1.2 | 1,444     |
| 2  | Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma, 2010, 158, 443-449.                                                                                  | 2.3 | 1,043     |
| 3  | Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass and Bioenergy, 2010, 34, 67-74.                                                                                  | 2.9 | 573       |
| 4  | Review of the pyrolysis platform for coproducing bioâ€oil and biochar. Biofuels, Bioproducts and Biorefining, 2009, 3, 547-562.                                                                       | 1.9 | 554       |
| 5  | The Charcoal Vision: A Win–Win–Win Scenario for Simultaneously Producing Bioenergy, Permanently<br>Sequestering Carbon, while Improving Soil and Water Quality. Agronomy Journal, 2008, 100, 178-181. | 0.9 | 497       |
| 6  | Assessing potential of biochar for increasing waterâ€holding capacity of sandy soils. GCB Bioenergy, 2013, 5, 132-143.                                                                                | 2.5 | 394       |
| 7  | NEAR-INFRARED REFLECTANCE SPECTROSCOPIC ANALYSIS OF SOIL C AND N. Soil Science, 2002, 167, 110-116.                                                                                                   | 0.9 | 337       |
| 8  | Influence of layer charge on swelling of smectites. Applied Clay Science, 2006, 34, 74-87.                                                                                                            | 2.6 | 300       |
| 9  | Environmental Benefits of Biochar. Journal of Environmental Quality, 2012, 41, 967-972.                                                                                                               | 1.0 | 270       |
| 10 | Characterization and quantification of biochar alkalinity. Chemosphere, 2017, 167, 367-373.                                                                                                           | 4.2 | 270       |
| 11 | The Charcoal Vision: A Win–Win–Win Scenario for Simultaneously Producing Bioenergy, Permanently<br>Sequestering Carbon, while Improving Soil and Water Quality. Agronomy Journal, 2008, 100, 178.     | 0.9 | 261       |
| 12 | Arsenic sorption on zero-valent iron-biochar complexes. Water Research, 2018, 137, 153-163.                                                                                                           | 5.3 | 234       |
| 13 | Anion exchange capacity of biochar. Green Chemistry, 2015, 17, 4628-4636.                                                                                                                             | 4.6 | 160       |
| 14 | Sorption of atrazine on Soil Clay Components. Environmental Science & Technology, 1994, 28,<br>1054-1061.                                                                                             | 4.6 | 153       |
| 15 | Biochar impact on Midwestern Mollisols and maize nutrient availability. Geoderma, 2014, 230-231,<br>340-347.                                                                                          | 2.3 | 147       |
| 16 | Adsorption behaviour and mechanisms of cadmium and nickel on rice straw biochars in single- and binary-metal systems. Chemosphere, 2019, 218, 308-318.                                                | 4.2 | 147       |
| 17 | Sorption of ammonium and nitrate to biochars is electrostatic and pH-dependent. Scientific Reports, 2018, 8, 17627.                                                                                   | 1.6 | 140       |
| 18 | Model for Crystalline Swelling of 2:1 Phyllosilicates. Clays and Clay Minerals, 1996, 44, 553-559.                                                                                                    | 0.6 | 118       |

David A Laird

| #  | Article                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | INFLUENCE OF SOIL MOISTURE ON NEAR-INFRARED REFLECTANCE SPECTROSCOPIC MEASUREMENT OF SOIL PROPERTIES. Soil Science, 2005, 170, 244-255.                                | 0.9 | 115       |
| 20 | Impact of Pyrolysis Temperature and Feedstock on Surface Charge and Functional Group Chemistry of<br>Biochars. Journal of Environmental Quality, 2018, 47, 452-461.    | 1.0 | 111       |
| 21 | Evaluation of Modified Boehm Titration Methods for Use with Biochars. Journal of Environmental Quality, 2013, 42, 1771-1778.                                           | 1.0 | 92        |
| 22 | Hysteresis in Crystalline Swelling of Smectites. Journal of Colloid and Interface Science, 1995, 171, 240-245.                                                         | 5.0 | 89        |
| 23 | Extent of Pyrolysis Impacts on Fast Pyrolysis Biochar Properties. Journal of Environmental Quality, 2012, 41, 1115-1122.                                               | 1.0 | 80        |
| 24 | Effect of Biochar on Soil Greenhouse Gas Emissions at the Laboratory and Field Scales. Soil Systems, 2019, 3, 8.                                                       | 1.0 | 80        |
| 25 | Relationship Between Cation Exchange Selectivity and Crystalline Swelling in Expanding 2:1<br>Phyllosilicates. Clays and Clay Minerals, 1997, 45, 681-689.             | 0.6 | 64        |
| 26 | Macroporous Carbon Supported Zerovalent Iron for Remediation of Trichloroethylene. ACS<br>Sustainable Chemistry and Engineering, 2017, 5, 1586-1593.                   | 3.2 | 63        |
| 27 | Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity. Carbon, 2017, 118, 422-430.                                                         | 5.4 | 62        |
| 28 | Soil carbon increased by twice the amount of biochar carbon applied after 6Âyears: Field evidence of<br>negative priming. GCB Bioenergy, 2020, 12, 240-251.            | 2.5 | 60        |
| 29 | Corn and soil response to biochar application and stover harvest. Field Crops Research, 2016, 187, 96-106.                                                             | 2.3 | 54        |
| 30 | Distinguishing black carbon from biogenic humic substances in soil clay fractions. Geoderma, 2008, 143, 115-122.                                                       | 2.3 | 50        |
| 31 | Estimating the organic oxygen content of biochar. Scientific Reports, 2020, 10, 13082.                                                                                 | 1.6 | 50        |
| 32 | Exchangeable Cation Hydration Properties Strongly Influence Soil Sorption of Nitroaromatic<br>Compounds. Soil Science Society of America Journal, 2006, 70, 1470-1479. | 1.2 | 46        |
| 33 | Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Biomass and Bioenergy, 2014, 63, 167-176.                  | 2.9 | 45        |
| 34 | A model for mechanistic and system assessments of biochar effects on soils and crops and tradeâ€offs.<br>GCB Bioenergy, 2016, 8, 1028-1045.                            | 2.5 | 45        |
| 35 | Carbon Sequestration in Clay Mineral Fractions from <sup>14</sup> C‣abeled Plant Residues. Soil<br>Science Society of America Journal, 2003, 67, 1715-1720.            | 1.2 | 44        |
| 36 | Vertical Distribution of Corn Stover Dry Mass Grown at Several US Locations. Bioenergy Research, 2011, 4, 11-21.                                                       | 2.2 | 43        |

David A Laird

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Spectroscopic Study of Carbaryl Sorption on Smectite from Aqueous Suspension. Environmental<br>Science & Technology, 2005, 39, 9123-9129.                                                                                              | 4.6 | 42        |
| 38 | Sustainable Pyrolytic Production of Zerovalent Iron. ACS Sustainable Chemistry and Engineering, 2017, 5, 767-773.                                                                                                                      | 3.2 | 41        |
| 39 | Long term biochar effects on corn yield, soil quality and profitability in the US Midwest. Field Crops<br>Research, 2018, 227, 30-40.                                                                                                  | 2.3 | 41        |
| 40 | Comparison of the Physical and Chemical Properties of Laboratory and Fieldâ€Aged Biochars. Journal of Environmental Quality, 2016, 45, 1627-1634.                                                                                      | 1.0 | 35        |
| 41 | Development of field mobile soil nitrate sensor technology to facilitate precision fertilizer management. Precision Agriculture, 2019, 20, 40-55.                                                                                      | 3.1 | 35        |
| 42 | Regenerating Agricultural Landscapes with Perennial Groundcover for Intensive Crop Production.<br>Agronomy, 2019, 9, 458.                                                                                                              | 1.3 | 34        |
| 43 | Enhancing Biochar as Scaffolding for Slow Release of Nitrogen Fertilizer. ACS Sustainable Chemistry and Engineering, 2021, 9, 8222-8231.                                                                                               | 3.2 | 34        |
| 44 | Quantitative mechanisms of cadmium adsorption on rice straw- and swine manure-derived biochars.<br>Environmental Science and Pollution Research, 2018, 25, 32418-32432.                                                                | 2.7 | 33        |
| 45 | Capture and Release of Orthophosphate by Fe-Modified Biochars: Mechanisms and Environmental Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 658-668.                                                                 | 3.2 | 33        |
| 46 | Impact of six lignocellulosic biochars on C and N dynamics of two contrasting soils. GCB Bioenergy, 2017, 9, 1279-1291.                                                                                                                | 2.5 | 28        |
| 47 | Impact of Biochar Organic and Inorganic Carbon on Soil CO 2 and N 2 O Emissions. Journal of Environmental Quality, 2017, 46, 505-513.                                                                                                  | 1.0 | 28        |
| 48 | Interactions Between Atrazine and Smectite Surfaces. ACS Symposium Series, 1996, , 86-100.                                                                                                                                             | 0.5 | 24        |
| 49 | Triazine Soil Interactions. , 2008, , 275-299.                                                                                                                                                                                         |     | 20        |
| 50 | Quantification and characterization of chemically-and thermally-labile and recalcitrant biochar fractions. Chemosphere, 2018, 194, 247-255.                                                                                            | 4.2 | 19        |
| 51 | Temperature and reaction atmosphere effects on the properties of corn stover biochar.<br>Environmental Progress and Sustainable Energy, 2017, 36, 696-707.                                                                             | 1.3 | 17        |
| 52 | Strategic switchgrass ( <i>Panicum virgatum</i> ) production within row cropping systems:<br>Regionalâ€scale assessment of soil erosion loss and water runoff impacts. GCB Bioenergy, 2020, 12,<br>955-967.                            | 2.5 | 17        |
| 53 | Perennial biomass crop establishment, community characteristics, and productivity in the upper US<br>Midwest: Effects of cropping systems seed mixtures and biochar applications. European Journal of<br>Agronomy, 2018, 101, 121-128. | 1.9 | 15        |
| 54 | Establishment of Perennial Groundcovers for Maize-Based Bioenergy Production Systems. Agronomy<br>Journal, 2017, 109, 822-835.                                                                                                         | 0.9 | 13        |

DAVID A LAIRD

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Living Mulch for Sustainable Maize Stover Biomass Harvest. Crop Science, 2017, 57, 3273-3290.                                                                                                                                              | 0.8 | 11        |
| 56 | Role of Smectite Quasicrystal Dynamics in Adsorption of Dinitrophenol. Soil Science Society of America Journal, 2008, 72, 347-354.                                                                                                         | 1.2 | 10        |
| 57 | Quantitative Prediction of Biochar Soil Amendments by Near-Infrared Reflectance Spectroscopy. Soil<br>Science Society of America Journal, 2013, 77, 1784-1794.                                                                             | 1.2 | 9         |
| 58 | Commentary on â€ <sup>~</sup> Current economic obstacles to biochar use in agriculture and climate change<br>mitigation' regarding uncertainty, context-specificity and alternative value sources. Carbon<br>Management, 2017, 8, 215-217. | 1.2 | 7         |
| 59 | Perennial cover crop influences on soil C and N and maize productivity. Nutrient Cycling in Agroecosystems, 2020, 116, 135-150.                                                                                                            | 1.1 | 6         |
| 60 | Temperature Effects on Properties of Rice Husk Biochar and Calcinated Burkina Phosphate Rock.<br>Agriculture (Switzerland), 2021, 11, 432.                                                                                                 | 1.4 | 6         |
| 61 | Real-Time Sensing of Soil Nitrate Concentration in the Parts per Million Range While the Soil is in Motion. Applied Spectroscopy, 2013, 67, 1106-1110.                                                                                     | 1.2 | 4         |
| 62 | Vertical Distribution of Structural Components in Corn Stover. Agriculture (Switzerland), 2014, 4, 274-287.                                                                                                                                | 1.4 | 3         |