
Jianping Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11969614/publications.pdf Version: 2024-02-01

IMNRING CHO

#	Article	IF	CITATIONS
1	IKBKE phosphorylates and stabilizes Snail to promote breast cancer invasion and metastasis. Cell Death and Differentiation, 2022, 29, 1528-1540.	5.0	10
2	Acetylation-dependent regulation of BRAF oncogenic function. Cell Reports, 2022, 38, 110250.	2.9	13
3	S6K1-mediated phosphorylation of PDK1 impairs AKT kinase activity and oncogenic functions. Nature Communications, 2022, 13, 1548.	5.8	19
4	Prostate-specific oncogene OTUD6A promotes prostatic tumorigenesis via deubiquitinating and stabilizing c-Myc. Cell Death and Differentiation, 2022, 29, 1730-1743.	5.0	18
5	EXOC4 Promotes Diffuse-Type Gastric Cancer Metastasis via Activating FAK Signal. Molecular Cancer Research, 2022, 20, 1021-1034.	1.5	4
6	Targeting protein kinases benefits cancer immunotherapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188738.	3.3	5
7	Skp2 dictates cell cycle-dependent metabolic oscillation between glycolysis and TCA cycle. Cell Research, 2021, 31, 80-93.	5.7	51
8	Energy status dictates PD-L1 protein abundance and anti-tumor immunity to enable checkpoint blockade. Molecular Cell, 2021, 81, 2317-2331.e6.	4.5	97
9	Membrane-Associated RING-CH 8 Functions as a Novel PD-L1 E3 Ligase to Mediate PD-L1 Degradation Induced by EGFR Inhibitors. Molecular Cancer Research, 2021, 19, 1622-1634.	1.5	19
10	Copper Promotes Tumorigenesis by Activating the PDK1â€AKT Oncogenic Pathway in a Copper Transporter 1 Dependent Manner. Advanced Science, 2021, 8, e2004303.	5.6	66
11	SPOP-mediated ubiquitination and degradation of PDK1 suppresses AKT kinase activity and oncogenic functions. Molecular Cancer, 2021, 20, 100.	7.9	36
12	LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1 pathways in growth control. Nature Cell Biology, 2020, 22, 246-256.	4.6	56
13	Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 188312.	3.3	48
14	AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nature Cell Biology, 2019, 21, 226-237.	4.6	109
15	Fine-tuning AKT kinase activity through direct lysine methylation. Cell Cycle, 2019, 18, 917-922.	1.3	19
16	Degrading proteins in animals: "PROTACâ€ŧion goes in vivo. Cell Research, 2019, 29, 179-180.	5.7	28
17	The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 138-159.	3.3	46
18	SCFβ-TRCP E3 ubiquitin ligase targets the tumor suppressor ZNRF3 for ubiquitination and degradation. Protein and Cell, 2018, 9, 879-889.	4.8	16

JIANPING GUO

#	Article	IF	CITATIONS
19	The p85 isoform of the kinase S6K1 functions as a secreted oncoprotein to facilitate cell migration and tumor growth. Science Signaling, 2018, 11, .	1.6	10
20	Cyclin D–CDK4 kinase destabilizes PD-L1 via cullin 3–SPOP to control cancer immune surveillance. Nature, 2018, 553, 91-95.	13.7	660
21	Functional analysis of Cullin 3 E3 ligases in tumorigenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 11-28.	3.3	48
22	Loss of Phd2 cooperates with BRAFV600E to drive melanomagenesis. Nature Communications, 2018, 9, 5426.	5.8	11
23	SCFFBW7-mediated degradation of Brg1 suppresses gastric cancer metastasis. Nature Communications, 2018, 9, 3569.	5.8	49
24	The emerging roles of protein homeostasisâ€governing pathways in Alzheimer's disease. Aging Cell, 2018, 17, e12801.	3.0	88
25	Tumor suppressor SPOP ubiquitinates and degrades EglN2 to compromise growth of prostate cancer cells. Cancer Letters, 2017, 390, 11-20.	3.2	37
26	TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature, 2017, 545, 365-369.	13.7	136
27	Prostate cancer–associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nature Medicine, 2017, 23, 1063-1071.	15.2	240
28	Functional analyses of major cancer-related signaling pathways in Alzheimer's disease etiology. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 341-358.	3.3	42
29	Cullin 3SPOP ubiquitin E3 ligase promotes the poly-ubiquitination and degradation of HDAC6. Oncotarget, 2017, 8, 47890-47901.	0.8	30
30	Overexpression of synuclein-Î ³ predicts lack of benefit from radiotherapy for breast cancer patients. BMC Cancer, 2016, 16, 717.	1.1	4
31	Inhibition of Rb Phosphorylation Leads to mTORC2-Mediated Activation of Akt. Molecular Cell, 2016, 62, 929-942.	4.5	87
32	New Insights into Protein Hydroxylation and Its Important Role in Human Diseases. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 208-220.	3.3	49
33	Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 232-251.	3.3	31
34	pVHL suppresses kinase activity of Akt in a proline-hydroxylation–dependent manner. Science, 2016, 353, 929-932.	6.0	165
35	Akt-Mediated Phosphorylation of XLF Impairs Non-Homologous End-Joining DNA Repair. Molecular Cell, 2015, 57, 648-661.	4.5	59
36	PtdIns(3,4,5) <i>P</i> 3-Dependent Activation of the mTORC2 Kinase Complex. Cancer Discovery, 2015, 5, 1194-1209.	7.7	297

JIANPING GUO

#	Article	IF	CITATIONS
37	K-ras-driven engineered mouse models for pancreatic cancer. Discovery Medicine, 2015, 19, 15-21.	0.5	4
38	Dual phosphorylation of Sin1 at T86 and T398 negatively regulates mTORC2 complex integrity and activity. Protein and Cell, 2014, 5, 171-177.	4.8	37
39	MicroRNA-155 Regulates Cell Survival, Growth, and Chemosensitivity by Targeting FOXO3a in Breast Cancer. Journal of Biological Chemistry, 2010, 285, 17869-17879.	1.6	331
40	ldentification of 24p3 as a Direct Target of Foxo3a Regulated by Interleukin-3 through the Phosphoinositide 3-Kinase/Akt Pathway. Journal of Biological Chemistry, 2009, 284, 2187-2193.	1.6	14
41	Applications of novel monoclonal antibodies specific for synuclein-Î ³ in evaluating its levels in sera and cancer tissues from colorectal cancer patients. Cancer Letters, 2008, 269, 148-158.	3.2	23
42	Neuronal protein synuclein γ predicts poor clinical outcome in breast cancer. International Journal of Cancer, 2007, 121, 1296-1305.	2.3	54