S J Cronin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1196775/publications.pdf Version: 2024-02-01

		38660	88477
214	8,041	50	70
papers	citations	h-index	g-index
223	223	223	4494
all docs	docs citations	times ranked	citing authors

SICRONIN

#	Article	IF	CITATIONS
1	Post-caldera volcanism reveals shallow priming of an intra-ocean arc andesitic caldera: Hunga volcano, Tonga, SW Pacific. Lithos, 2022, 412-413, 106614.	0.6	38
2	Volcanic air pollution and human health: recent advances and future directions. Bulletin of Volcanology, 2022, 84, 1.	1.1	31
3	Seismic precursors to the Whakaari 2019 phreatic eruption are transferable to other eruptions and volcanoes. Nature Communications, 2022, 13, 2002.	5.8	18
4	Magmatic drivers of a 200-year-long high-magnitude explosive flare-up from Mt. Tongariro, New Zealand. Journal of Volcanology and Geothermal Research, 2022, 427, 107569.	0.8	2
5	Phreatic and Hydrothermal Eruptions: From Overlooked to Looking Over. Bulletin of Volcanology, 2022, 84, .	1.1	11
6	Forecasting Eruptions at Poorly Known Volcanoes Using Analogs and Multivariate Renewal Processes. Geophysical Research Letters, 2022, 49, .	1.5	2
7	Rapid magmatic processes drive persistently active volcanism. Lithos, 2021, 380-381, 105868.	0.6	2
8	Formation of crystal-rich, mixed, intermediate lavas at Pouakai Volcano and the evolution of the Taranaki volcanic lineament, western North Island, New Zealand. Lithos, 2021, 380-381, 105850.	0.6	2
9	Host Rock Variability Powers the Diversity of Steamâ€Driven Eruptions. Geophysical Research Letters, 2021, 48, e2020GL089025.	1.5	3
10	Ruapehu and Tongariro stratovolcanoes: a review of current understanding. New Zealand Journal of Geology, and Geophysics, 2021, 64, 389-420.	1.0	20
11	Elucidating stratovolcano construction from volcaniclastic massâ€flow deposits: The medial ringâ€plain of Taranaki Volcano, New Zealand. Sedimentology, 2021, 68, 2422-2449.	1.6	5
12	The magma source of small-scale intraplate monogenetic volcanic systems in northern New Zealand. Journal of Volcanology and Geothermal Research, 2021, 418, 107326.	0.8	6
13	Assessment of leachable elements in volcanic ashfall: a review and evaluation of a standardized protocol for ash hazard characterization. Journal of Volcanology and Geothermal Research, 2020, 392, 106756.	0.8	33
14	Spatiotemporal variations in eruption style and magnitude at Yasur volcano, Vanuatu: part 2—extending Strombolian eruption classifications. Bulletin of Volcanology, 2020, 82, 1.	1.1	3
15	Complex crater fields formed by steam-driven eruptions: Lake Okaro, New Zealand. Bulletin of the Geological Society of America, 2020, 132, 1914-1930.	1.6	13
16	A Confidence-Based Assessment Method for Distinguishing Pyroclastic Density Current Deposits From Other Volcaniclastic Units. Frontiers in Earth Science, 2020, 8, .	0.8	1
17	A review of lahars; past deposits, historic events and present-day simulations from Mt. Ruapehu and Mt. Taranaki, New Zealand. New Zealand Journal of Geology, and Geophysics, 2020, , 1-25.	1.0	12
18	Spatio-temporal associations between dike intrusions and fault ruptures in the Tongariro Volcanic Center, New Zealand. Journal of Volcanology and Geothermal Research, 2020, 404, 107037.	0.8	8

#	Article	IF	CITATIONS
19	Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand. Nature Communications, 2020, 11, 3562.	5.8	68
20	Hydrothermal eruption dynamics reflecting vertical variations in host rock geology and geothermal alteration, Champagne Pool, Wai-o-tapu, New Zealand. Bulletin of Volcanology, 2020, 82, 1.	1.1	14
21	Micro-porous pyroclasts reflecting multi-vent basaltic-andesite Plinian eruptions at Mt. Tongariro, New Zealand. Journal of Volcanology and Geothermal Research, 2020, 401, 106936.	0.8	8
22	Mineralogical Evidence of Pre-caldera Magma Petrogenesis in the Jemez Mountains Volcanic Field, New Mexico, USA. Journal of Petrology, 2020, 61, .	1.1	4
23	Spatiotemporal variations in eruption style, magnitude and vent morphology at Yasur volcano, Vanuatu: insights into the conduit system. Bulletin of Volcanology, 2020, 82, 1.	1.1	10
24	Spatiotemporal Relationships between Two Closelyâ€spaced Strombolianâ€style Vents, Yasur, Vanuatu. Geophysical Research Letters, 2020, 47, e2019GL085687.	1.5	12
25	Understanding multi-vent Plinian eruptions at Mt. Tongariro Volcanic Complex, New Zealand. Bulletin of Volcanology, 2020, 82, 1.	1.1	12
26	MatHaz: a Matlab code to assist with probabilistic spatio-temporal volcanic hazard assessment in distributed volcanic fields. Journal of Applied Volcanology, 2019, 8, .	0.7	10
27	Diversity of soluble salt concentrations on volcanic ash aggregates from a variety of eruption types and deposits. Bulletin of Volcanology, 2019, 81, 1.	1.1	9
28	The characteristics of a multi-episode volcanic regime: the post-AD 960 Maero Eruptive Period of Mt. Taranaki (New Zealand). Bulletin of Volcanology, 2019, 81, 1.	1.1	15
29	<i>In situ</i> granulation by thermal stress during subaqueous volcanic eruptions. Geology, 2019, 47, 179-182.	2.0	12
30	Recognizing long-runout pyroclastic flow deposits using paleomagnetism of ash. Bulletin of the Geological Society of America, 2019, 131, 1783-1793.	1.6	10
31	Engineering geomorphological investigation of the Kasavu landslide, Viti Levu, Fiji. Landslides, 2019, 16, 1341-1351.	2.7	8
32	Generation of air lubrication within pyroclastic density currents. Nature Geoscience, 2019, 12, 381-386.	5.4	41
33	Paleomagnetic determination of the age and properties of the 1780–1800ÂAD dome effusion/collapse episode of Mt. Taranaki, New Zealand. Bulletin of Volcanology, 2019, 81, 1.	1.1	12
34	Intra-eruptive trachyte-phonolite transition: Natural evidence and experimental constraints on the role of crystal mushes. American Mineralogist, 2019, 104, 1750-1764.	0.9	5
35	Engineering characteristics of soils prone to rainfall-induced slope failure in Viti Levu, Fiji. Quarterly Journal of Engineering Geology and Hydrogeology, 2019, 52, 336-345.	0.8	3
36	Characterisation of faults as earthquake sources from geomorphic data in the Tongariro Volcanic Complex, New Zealand. New Zealand Journal of Geology, and Geophysics, 2019, 62, 131-142.	1.0	2

#	Article	IF	CITATIONS
37	Insights into eruption dynamics from the 2014 pyroclastic deposits of Kelut volcano, Java, Indonesia, and implications for future hazards. Journal of Volcanology and Geothermal Research, 2019, 382, 6-23.	0.8	19
38	Evaluating emplacement temperature of a 1000-year sequence of mass flows using paleomagnetism of their deposits at Mt. Taranaki, New Zealand. Volcanica, 2019, 2, 11-24.	0.6	7
39	A volcanic event forecasting model for multiple tephra records, demonstrated on Mt. Taranaki, New Zealand. Bulletin of Volcanology, 2018, 80, 1.	1.1	23
40	Geomorphological characteristics of slope failures in northeast Viti Levu island, Fiji, triggered by Tropical Cyclone Winston in February 2016. New Zealand Geographer, 2018, 74, 64-76.	0.4	6
41	Influence of porosity and groundmass crystallinity on dome rock strength: a case study from Mt. Taranaki, New Zealand. Bulletin of Volcanology, 2018, 80, 1.	1.1	36
42	Complex and Cascading Triggering of Submarine Landslides and Turbidity Currents at Volcanic Islands Revealed From Integration of High-Resolution Onshore and Offshore Surveys. Frontiers in Earth Science, 2018, 6, .	0.8	22
43	Volcanic hazard scenarios for multiphase andesitic Plinian eruptions from lithostratigraphy: Insights into pyroclastic density current diversity at Mount Taranaki, New Zealand. Bulletin of the Geological Society of America, 2018, 130, 1645-1663.	1.6	15
44	National-level long-term eruption forecasts by expert elicitation. Bulletin of Volcanology, 2018, 80, 1.	1.1	23
45	Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tongaâ€Hunga Ha'apai Volcano, Tonga. Journal of Geophysical Research: Solid Earth, 2018, 123, 3762-3779.	1.4	34
46	Olivine xenocryst diffusion reveals rapid monogenetic basaltic magma ascent following complex storage at Pupuke Maar, Auckland Volcanic Field, New Zealand. Earth and Planetary Science Letters, 2018, 499, 13-22.	1.8	41
47	The spatial and temporal â€~cost' of volcanic eruptions: assessing economic impact, business inoperability, and spatial distribution of risk in the Auckland region, New Zealand. Bulletin of Volcanology, 2017, 79, 1.	1.1	22
48	Scientist and stakeholder perspectives of transdisciplinary research: Early attitudes, expectations, and tensions. Environmental Science and Policy, 2017, 74, 30-39.	2.4	95
49	Unifying tephrostratigraphic approaches to redefine major Holocene marker tephras, Mt. Taranaki, New Zealand. Journal of Volcanology and Geothermal Research, 2017, 337, 29-43.	0.8	11
50	A 30,000 yr high-precision eruption history for the andesitic Mt. Taranaki, North Island, New Zealand. Quaternary Research, 2017, 87, 1-23.	1.0	28
51	New insights into Holocene eruption episodes from proximal deposit sequences at Mt. Taranaki (Egmont), New Zealand. Bulletin of Volcanology, 2017, 79, 1.	1.1	19
52	Diverse dynamics of Holocene mafic-intermediate Plinian eruptions at Mt. Taranaki (Egmont), New Zealand. Bulletin of Volcanology, 2017, 79, 1.	1.1	18
53	Geology and geochemistry of Late Quaternary volcanism in northern Harrat Rahat, Kingdom of Saudi Arabia: implications for eruption dynamics, regional stratigraphy and magma evolution. Geological Society Special Publication, 2017, 446, <u>1</u> 73-204.	0.8	12
54	Computable general equilibrium modelling of economic impacts from volcanic event scenarios at regional and national scale, Mt. Taranaki, New Zealand. Bulletin of Volcanology, 2017, 79, 1.	1.1	20

#	Article	IF	CITATIONS
55	Crustal extension in the Tongariro graben, New Zealand: Insights into volcano-tectonic interactions and active deformation in a young continental rift. Bulletin of the Geological Society of America, 2017, 129, 1085-1099.	1.6	31
56	Conceptual Development of a National Volcanic Hazard Model for New Zealand. Frontiers in Earth Science, 2017, 5, .	0.8	3
57	New Volcanic Island Unveils Explosive Past. Eos, 2017, , .	0.1	37
58	Idiosyncrasies of Volcanic Sulfur Viscosity and the Triggering of Unheralded Volcanic Eruptions. Frontiers in Earth Science, 2016, 4, .	0.8	12
59	Earthquake history at the eastern boundary of the South Taupo Volcanic Zone, New Zealand. New Zealand Journal of Geology, and Geophysics, 2016, 59, 522-543.	1.0	18
60	Agricultural impact assessment and management after three widespread tephra falls in Patagonia, South America. Natural Hazards, 2016, 82, 1167-1229.	1.6	32
61	New insights into the evolution of the magmatic system of a composite andesite volcano revealed by clasts from distal mass-flow deposits: Ruapehu volcano, New Zealand. Bulletin of Volcanology, 2016, 78, 1.	1.1	15
62	Coupling of turbulent and non-turbulent flow regimes within pyroclastic density currents. Nature Geoscience, 2016, 9, 767-771.	5.4	63
63	Experimental estimates of the energy budget of hydrothermal eruptions; application to 2012 Upper Te Maari eruption, New Zealand. Earth and Planetary Science Letters, 2016, 452, 281-294.	1.8	17
64	Fate and agricultural consequences of leachable elements added to the environment from the 2011 Cordón Caulle tephra fall. Journal of Volcanology and Geothermal Research, 2016, 327, 554-570.	0.8	12
65	Posteruptive impacts of pyroclastic deposits from basaltic andesite stratovolcanoes on surface water composition. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1275-1287.	1.3	8
66	Variable Conditions of Magma Storage and Differentiation with Links to Eruption Style at Ambrym Volcano, Vanuatu. Journal of Petrology, 2016, 57, 1049-1072.	1.1	25
67	Climate influence on volcano edifice stability and fluvial landscape evolution surrounding Mount Ruapehu, New Zealand. Geomorphology, 2016, 262, 77-90.	1.1	14
68	Optimal likelihood-based matching of volcanic sources and deposits in the Auckland Volcanic Field. Journal of Volcanology and Geothermal Research, 2016, 323, 194-208.	0.8	7
69	Integrating geological and geophysical data to improve probabilistic hazard forecasting of Arabian Shield volcanism. Journal of Volcanology and Geothermal Research, 2016, 311, 41-59.	0.8	16
70	Long-lived shield volcanism within a monogenetic basaltic field: The conundrum of Rangitoto volcano, New Zealand. Bulletin of the Geological Society of America, 2016, 128, 1160-1172.	1.6	16
71	Estimation of tephra volumes from sparse and incompletely observed deposit thicknesses. Bulletin of Volcanology, 2016, 78, 1.	1.1	74
72	Mantle heterogeneity controls on small-volume basaltic volcanism: COMMENT. Geology, 2015, 43, e370-e370.	2.0	0

#	Article	IF	CITATIONS
73	Co-located monogenetic eruptions ~200Âkyr apart driven by tapping vertically separated mantle source regions, Chagwido, Jeju Island, Republic of Korea. Bulletin of Volcanology, 2015, 77, 1.	1.1	23
74	The Al-Du'aythah volcanic cones, Al-Madinah City: implications for volcanic hazards in northern Harrat Rahat, Kingdom of Saudi Arabia. Bulletin of Volcanology, 2015, 77, 1.	1.1	35
75	Impacts of catastrophic volcanic collapse on the erosion and morphology of a distal fluvial landscape: Hautapu River, Mount Ruapehu, New Zealand. Bulletin of the Geological Society of America, 2015, 127, 266-280.	1.6	16
76	Dynamics and pre-eruptive conditions of catastrophic, ignimbrite-producing eruptions from the Yenkahe Caldera, Vanuatu. Journal of Volcanology and Geothermal Research, 2015, 308, 39-60.	0.8	12
77	Transport and deposition processes of the hydrothermal blast of the 6 August 2012 Te Maari eruption, Mt. Tongariro. Bulletin of Volcanology, 2015, 77, 1.	1.1	19
78	Sensitivity to volcanic field boundary. Journal of Applied Volcanology, 2015, 4, .	0.7	19
79	Construction of the North Head (Maungauika) tuff cone: a product of Surtseyan volcanism, rare in the Auckland Volcanic Field, New Zealand. Bulletin of Volcanology, 2015, 77, 1.	1.1	28
80	Effects of volatile behaviour on dome collapse and resultant pyroclastic surge dynamics: Gunung Merapi 2010 eruption. Geological Society Special Publication, 2015, 410, 199-218.	0.8	7
81	Identifying multiple eruption phases from a compound tephra blanket: an example of the AD1256 Al-Madinah eruption, Saudi Arabia. Bulletin of Volcanology, 2015, 77, 1.	1.1	27
82	Intraplate volcanism influenced by distal subduction tectonics at Jeju Island, Republic of Korea. Bulletin of Volcanology, 2015, 77, 1.	1.1	52
83	Synthesizing largeâ€scale pyroclastic flows: Experimental design, scaling, and first results from PELE. Journal of Geophysical Research: Solid Earth, 2015, 120, 1487-1502.	1.4	60
84	Linking distal volcaniclastic sedimentation and stratigraphy with the development of Ruapehu volcano, New Zealand. Bulletin of Volcanology, 2015, 77, 1.	1.1	16
85	Shallow-seated explosions in the construction of the Motukorea tuff ring (Auckland, New Zealand): Evidence from lithic and sedimentary characteristics. Journal of Volcanology and Geothermal Research, 2015, 304, 272-286.	0.8	22
86	Interpreting Auckland's volcanic governance through an institutional lens. Natural Hazards, 2015, 75, 441-464.	1.6	3
87	Textural features as indicators of debris avalanche transport and emplacement, Taranaki volcano. Bulletin of the Geological Society of America, 2015, 127, 3-18.	1.6	41
88	Volcanic ash leachate compositions and assessment of health and agricultural hazards from 2012 hydrothermal eruptions, Tongariro, New Zealand. Journal of Volcanology and Geothermal Research, 2014, 286, 233-247.	0.8	35
89	Numerical simulation of basaltic lava flows in the Auckland Volcanic Field, New Zealand—implication for volcanic hazard assessment. Bulletin of Volcanology, 2014, 76, 1.	1.1	43
90	Final Magma Storage Depth Modulation of Explosivity and Trachyte–Phonolite Genesis at an Intraplate Volcano: a Case Study from Ulleung Island, South Korea. Journal of Petrology, 2014, 55, 709-747.	1.1	41

#	Article	IF	CITATIONS
91	Transport and emplacement mechanisms of channelised long-runout debris avalanches, Ruapehu volcano, New Zealand. Bulletin of Volcanology, 2014, 76, 1.	1.1	36
92	Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland Volcanic Field (New Zealand). Journal of Volcanology and Geothermal Research, 2014, 276, 46-63.	0.8	47
93	The application of a calibrated 3D ballistic trajectory model to ballistic hazard assessments at Upper Te Maari, Tongariro. Journal of Volcanology and Geothermal Research, 2014, 286, 248-262.	0.8	54
94	Vents to events: determining an eruption event record from volcanic vent structures for the Harrat Rahat, Saudi Arabia. Bulletin of Volcanology, 2014, 76, 1.	1.1	41
95	Dynamics of surges generated by hydrothermal blasts during the 6 August 2012 Te Maari eruption, Mt. Tongariro, New Zealand. Journal of Volcanology and Geothermal Research, 2014, 286, 348-366.	0.8	71
96	Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: Implications for the description of continental lava fields. Journal of Asian Earth Sciences, 2014, 84, 131-145.	1.0	58
97	Integrating multidisciplinary science, modelling and impact data into evolving, syn-event volcanic hazard mapping and communication: A case study from the 2012 Tongariro eruption crisis, New Zealand. Journal of Volcanology and Geothermal Research, 2014, 286, 208-232.	0.8	43
98	Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research, 2014, 286, 101-115.	0.8	69
99	Post 19Âka B.P. eruptive history of Ulleung Island, Korea, inferred from an intra-caldera pyroclastic sequence. Bulletin of Volcanology, 2014, 76, 1.	1.1	32
100	Pyroclast textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu. Bulletin of Volcanology, 2014, 76, 1.	1,1	30
101	The eruptive history and chemical stratigraphy of a post-caldera, steady-state volcano: Yasur, Vanuatu. Bulletin of Volcanology, 2014, 76, 1.	1.1	37
102	Debris flow evolution and the activation of an explosive hydrothermal system; Te Maari, Tongariro, New Zealand. Journal of Volcanology and Geothermal Research, 2014, 286, 303-316.	0.8	63
103	Automated statistical matching of multiple tephra records exemplified using five long maar sequences younger than 75 ka, Auckland, New Zealand. Quaternary Research, 2014, 82, 405-419.	1.0	16
104	Using the spatial distribution and lithology of ballistic blocks to interpret eruption sequence and dynamics: August 6 2012 Upper Te Maari eruption, New Zealand. Journal of Volcanology and Geothermal Research, 2014, 286, 373-386.	0.8	58
105	Perils in distinguishing phreatic from phreatomagmatic ash; insights into the eruption mechanisms of the 6 August 2012 Mt. Tongariro eruption, New Zealand. Journal of Volcanology and Geothermal Research, 2014, 286, 397-414.	0.8	71
106	The use of Numerical Weather Prediction and a Lagrangian transport (NAME-III) and dispersion (ASHFALL) models to explain patterns of observed ash deposition and dispersion following the August 2012 Te Maari, New Zealand eruption. Journal of Volcanology and Geothermal Research, 2014, 286, 437-451	0.8	15
107	Modeling thickness variability in tephra deposition. Bulletin of Volcanology, 2013, 75, 1.	1.1	16
108	A model for calculating eruptive volumes for monogenetic volcanoes — Implication for the Quaternary Auckland Volcanic Field, New Zealand. Journal of Volcanology and Geothermal Research, 2013, 266, 16-33.	0.8	109

#	Article	IF	CITATIONS
109	A first hazard analysis of the Quaternary Harrat Al-Madinah volcanic field, Saudi Arabia. Journal of Volcanology and Geothermal Research, 2013, 267, 39-46.	0.8	31
110	Insights into the October–November 2010 Gunung Merapi eruption (Central Java, Indonesia) from the stratigraphy, volume and characteristics of its pyroclastic deposits. Journal of Volcanology and Geothermal Research, 2013, 261, 244-259.	0.8	77
111	Geochemical precursors for eruption repose length. Geophysical Journal International, 2013, 193, 855-873.	1.0	21
112	Temporal Evolution of a High-K Andesitic Magmatic System: Taranaki Volcano, New Zealand. Journal of Petrology, 2012, 53, 325-363.	1.1	26
113	Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland Volcanic Field, New Zealand. Bulletin of Volcanology, 2012, 74, 2121-2137.	1.1	66
114	llchulbong tuff cone, Jeju Island, Korea, revisited: A compound monogenetic volcano involving multiple magma pulses, shifting vents, and discrete eruptive phases. Bulletin of the Geological Society of America, 2012, 124, 259-274.	1.6	60
115	Energy growth in laharic mass flows. Geology, 2012, 40, 475-478.	2.0	33
116	How Small-volume Basaltic Magmatic Systems Develop: a Case Study from the Jeju Island Volcanic Field, Korea. Journal of Petrology, 2012, 53, 985-1018.	1.1	78
117	Evaluation of Titan2D modelling forecasts for the 2007 Crater Lake break-out lahar, Mt. Ruapehu, New Zealand. Geomorphology, 2012, 136, 95-105.	1.1	14
118	Non-explosive, dome-forming eruptions at Mt. Taranaki, New Zealand. Geomorphology, 2012, 136, 15-30.	1.1	51
119	Magma Evolution in the Primitive, Intra-oceanic Tonga Arc: Rapid Petrogenesis of Dacites at Fonualei Volcano. Journal of Petrology, 2012, 53, 1231-1253.	1.1	51
120	LiDAR-based quantification of lava flow susceptibility in the City of Auckland (New Zealand). Remote Sensing of Environment, 2012, 125, 198-213.	4.6	30
121	Spatio-temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island Volcanic Field, Korea. Lithos, 2012, 148, 337-352.	0.6	70
122	Forecasting catastrophic stratovolcano collapse: A model based on Mount Taranaki, New Zealand. Geology, 2012, 40, 983-986.	2.0	30
123	Short- and long-term evacuation of people and livestock during a volcanic crisis: lessons from the 1991 eruption of VolcÃ;n Hudson, Chile. Journal of Applied Volcanology, 2012, 1, .	0.7	38
124	Reconstructing the largest explosive eruptions of Mt. Ruapehu, New Zealand: lithostratigraphic tools to understand subplinian–plinian eruptions at andesitic volcanoes. Bulletin of Volcanology, 2012, 74, 617-640.	1.1	45
125	Andesitic Plinian eruptions at Mt. Ruapehu: quantifying the uppermost limits of eruptive parameters. Bulletin of Volcanology, 2012, 74, 1161-1185.	1.1	23
126	Dental fluorosis linked to degassing of Ambrym volcano, Vanuatu: a novel exposure pathway. Environmental Geochemistry and Health, 2012, 34, 155-170.	1.8	51

#	Article	IF	CITATIONS
127	Defining conditions for bulking and debulking in lahars. Bulletin of the Geological Society of America, 2011, 123, 1234-1246.	1.6	42
128	Relating magma composition to eruption variability at andesitic volcanoes: A case study from Mount Taranaki, New Zealand. Bulletin of the Geological Society of America, 2011, 123, 2005-2015.	1.6	30
129	The Whangaehu Formation: Debris-avalanche and lahar deposits from ancestral Ruapehu volcano, New Zealand. Geomorphology, 2011, 133, 57-79.	1.1	27
130	Unravelling a complex volcanic history from fine-grained, intricate Holocene ashÂsequences at the Tongariro Volcanic Centre, New Zealand. Quaternary International, 2011, 246, 352-363.	0.7	63
131	Integrating records of explosive and effusive activity from proximal and distal sequences: Mt. Taranaki, New Zealand. Quaternary International, 2011, 246, 364-373.	0.7	41
132	The influence of magma plumbing complexity on monogenetic eruptions, Jeju Island, Korea. Terra Nova, 2011, 23, 70-75.	0.9	40
133	Drivers of explosivity and elevated hazard in basaltic fissure eruptions: The 1913 eruption of Ambrym Volcano, Vanuatu (SW-Pacific). Journal of Volcanology and Geothermal Research, 2011, 201, 194-209.	0.8	53
134	Palaeotsunamis in the Pacific Islands. Earth-Science Reviews, 2011, 107, 141-146.	4.0	73
135	On Selection of Analog Volcanoes. Mathematical Geosciences, 2011, 43, 505-519.	1.4	18
136	Impacts on agriculture following the 1991 eruption of Vulcan Hudson, Patagonia: lessons for recovery. Natural Hazards, 2011, 57, 185-212.	1.6	58
137	Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bulletin of Volcanology, 2011, 73, 223-239.	1.1	138
138	Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bulletin of Volcanology, 2011, 73, 55-72.	1.1	133
139	Mafic Plinian volcanism and ignimbrite emplacement at Tofua volcano, Tonga. Bulletin of Volcanology, 2011, 73, 1259-1277.	1.1	18
140	A medial to distal volcaniclastic record of an andesite stratovolcano: detailed stratigraphy of the ring-plain succession of south-west Taranaki, New Zealand. International Journal of Earth Sciences, 2011, 100, 1937-1966.	0.9	64
141	Kinematic characteristics of pyroclastic density currents at Merapi and controls on their avulsion from natural and engineered channels. Bulletin of the Geological Society of America, 2011, 123, 1127-1140.	1.6	76
142	Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: "soft-substrate―to "combined―aquifer controlled phreatomagmatism in intraplate volcanic fields Research Article. Open Geosciences, 2010, 2, .	0.6	15
143	Is Efate (Vanuatu, SW Pacific) a result of subaerial or submarine eruption? An alternative model for the 1 Ma Efate Pumice Formation. Open Geosciences, 2010, 2, .	0.6	5
144	Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contributions To Mineralogy and Petrology, 2010, 160, 931-950.	1.2	113

#	Article	IF	CITATIONS
145	The coalescence and organization of lahars at Semeru volcano, Indonesia. Bulletin of Volcanology, 2010, 72, 961-970.	1.1	42
146	Vulnerability of farm water supply systems to volcanic ash fall. Environmental Earth Sciences, 2010, 61, 675-688.	1.3	32
147	Mapping block-and-ash flow hazards based on Titan 2D simulations: a case study from Mt. Taranaki, NZ. Natural Hazards, 2010, 53, 483-501.	1.6	52
148	Coupled fluid dynamics-sediment transport modelling of a Crater Lake break-out lahar: Mt. Ruapehu, New Zealand. Journal of Hydrology, 2010, 388, 399-413.	2.3	50
149	Hydraulic, physical and rheological characteristics of rainâ€ŧriggered lahars at Semeru volcano, Indonesia. Earth Surface Processes and Landforms, 2010, 35, 1573-1590.	1.2	29
150	The 2006 pyroclastic deposits of Merapi Volcano, Java, Indonesia: High-spatial resolution IKONOS images and complementary ground based observations. Remote Sensing of Environment, 2010, 114, 1949-1967.	4.6	26
151	Quantifying the geomorphic impacts of a lake-breakout lahar, Mount Ruapehu, New Zealand. Geology, 2010, 38, 67-70.	2.0	63
152	Lahar hazard assessment using Titan2D for an alluvial fan with rapidly changing geomorphology: Whangaehu River, Mt. Ruapehu. Geomorphology, 2010, 116, 162-174.	1.1	34
153	Phreatomagmatic volcanic hazards where rift-systems meet the sea, a study from Ambae Island, Vanuatu. Journal of Volcanology and Geothermal Research, 2009, 180, 246-258.	0.8	25
154	Volcanic structures and oral traditions of volcanism of Western Samoa (SW Pacific) and their implications for hazard education. Journal of Volcanology and Geothermal Research, 2009, 186, 223-237.	0.8	43
155	A fluid dynamics approach to modelling the 18th March 2007 lahar at Mt. Ruapehu, New Zealand. Bulletin of Volcanology, 2009, 71, 153-169.	1.1	66
156	Merging eruption datasets: building an integrated Holocene eruptive record for Mt Taranaki, New Zealand. Bulletin of Volcanology, 2009, 71, 903-918.	1.1	51
157	Surge in sulphur and halogen degassing from Ambrym volcano, Vanuatu. Bulletin of Volcanology, 2009, 71, 1159-1168.	1.1	61
158	Intra- and extra-caldera volcaniclastic facies and geomorphic characteristics of a frequently active mafic island–arc volcano, Ambrym Island, Vanuatu. Sedimentary Geology, 2009, 220, 256-270.	1.0	30
159	Remote sensing data types and techniques for lahar path detection: A case study at Mt Ruapehu, New Zealand. Remote Sensing of Environment, 2009, 113, 1778-1786.	4.6	36
160	Sedimentary signatures of cyclic growth and destruction of stratovolcanoes: A case study from Mt. Taranaki, New Zealand. Sedimentary Geology, 2009, 220, 288-305.	1.0	72
161	Landscape and sedimentary response to catastrophic debris avalanches, western Taranaki, New Zealand. Sedimentary Geology, 2009, 220, 271-287.	1.0	54
162	Explaining the extreme mobility of volcanic ice-slurry flows, Ruapehu volcano, New Zealand. Geology, 2009, 37, 15-18.	2.0	30

#	Article	IF	CITATIONS
163	Seismic signals of snowâ€ s lurry lahars in motion: 25 September 2007, Mt Ruapehu, New Zealand. Geophysical Research Letters, 2009, 36, .	1.5	46
164	CAN VOLCANIC ASH POISON WATER SUPPLIES. Integrated Environmental Assessment and Management, 2009, 5, 713.	1.6	16
165	Developing probabilistic eruption forecasts for dormant volcanoes: a case study from Mt Taranaki, New Zealand. Bulletin of Volcanology, 2008, 70, 507-515.	1.1	68
166	Welcoming a monster to the world: Myths, oral tradition, and modern societal response to volcanic disasters. Journal of Volcanology and Geothermal Research, 2008, 176, 407-418.	0.8	108
167	Quantifying volcanic ash fall hazard to electricity infrastructure. Journal of Volcanology and Geothermal Research, 2008, 177, 1055-1062.	0.8	48
168	Eruption episodes and magma recharge events in andesitic systems: Mt Taranaki, New Zealand. Journal of Volcanology and Geothermal Research, 2008, 177, 1063-1076.	0.8	22
169	Rapid timescales of differentiation and evidence for crustal contamination at intra-oceanic arcs: Geochemical and U–Th–Ra–Sr–Nd isotopic constraints from Lopevi Volcano, Vanuatu, SW Pacific. Earth and Planetary Science Letters, 2008, 273, 184-194.	1.8	28
170	Using titanomagnetite textures to elucidate volcanic eruption histories. Geology, 2008, 36, 31.	2.0	61
171	Communicating geoscience to indigenous people: examples from the Solomon Islands. Geological Society Special Publication, 2008, 305, 141-161.	0.8	4
172	Hyaloclastites, peperites and soft-sediment deformation textures of a shallow subaqueous Miocene rhyolitic dome-cryptodome complex, Pálháza, Hungary. Geological Society Special Publication, 2008, 302, 63-86.	0.8	20
173	Volcanic craters, pit craters and high-level magma-feeding systems of a mafic island-arc volcano: Ambrym, Vanuatu, South Pacific. Geological Society Special Publication, 2008, 302, 87-102.	0.8	26
174	VOLCANISM AND ARCHAEOLOGY. , 2008, , 2185-2196.		3
175	Improving the reliability of microprobe-based analyses of andesitic glasses for tephra correlation. Holocene, 2007, 17, 573-583.	0.9	37
176	Syn- and post-eruptive erosion, gully formation, and morphological evolution of a tephra ring in tropical climate erupted in 1913 in West Ambrym, Vanuatu. Geomorphology, 2007, 86, 115-130.	1.1	53
177	Breakout Lahar from New Zealand's Crater Lake. Eos, 2007, 88, 441-442.	0.1	43
178	Transition from effusive to explosive phases in andesite eruptions — A case-study from the AD1655 eruption of Mt. Taranaki, New Zealand. Journal of Volcanology and Geothermal Research, 2007, 161, 15-34.	0.8	77
179	Flow and deposition of pyroclastic granular flows: A type example from the 1975 Ngauruhoe eruption, New Zealand. Journal of Volcanology and Geothermal Research, 2007, 161, 165-186.	0.8	78
180	Kuwae Caldera and Climate Confusion. The Open Geology Journal, 2007, 1, 7-11.	0.4	19

#	Article	IF	CITATIONS
181	Contamination of water supplies by volcanic ashfall: A literature review and simple impact modelling. Journal of Volcanology and Geothermal Research, 2006, 158, 296-306.	0.8	148
182	Exploding lakes in Vanuatu — "Surtseyan-style" eruptions witnessed on Ambae Island. Episodes, 2006, 29, 87-92.	0.8	51
183	A conceptual model for block-and-ash flow basal avalanche transport and deposition, based on deposit architecture of 1998 and 1994 Merapi flows. Journal of Volcanology and Geothermal Research, 2005, 139, 117-134.	0.8	64
184	Nabukelevu volcano (Mt. Washington), Kadavu – a source of hitherto unknown volcanic hazard in Fiji. Journal of Volcanology and Geothermal Research, 2004, 131, 371-396.	0.8	21
185	Lahar-Triggering Mechanisms and Hazard at Ruapehu Volcano, New Zealand. Natural Hazards, 2004, 31, 85-109.	1.6	43
186	Maximising Multi-Stakeholder Participation in Government and Community Volcanic Hazard Management Programs; A Case Study from Savo, Solomon Islands. Natural Hazards, 2004, 33, 105-136.	1.6	69
187	Participatory methods of incorporating scientific with traditional knowledge for volcanic hazard management on Ambae Island, Vanuatu. Bulletin of Volcanology, 2004, 66, 652-668.	1.1	175
188	The eruptive history and volcanic hazards of Savo, Solomon Islands. Bulletin of Volcanology, 2003, 65, 165-181.	1.1	27
189	Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand. Journal of Volcanology and Geothermal Research, 2003, 121, 271-291.	0.8	187
190	Fertiliser contaminants in New Zealand grazed pasture with special reference to cadmium and fluorine $\hat{a} \in $ " a review. Soil Research, 2003, 41, 501.	0.6	130
191	Environmental impacts on health from continuous volcanic activity at Yasur (Tanna) and Ambrym, Vanuatu. International Journal of Environmental Health Research, 2002, 12, 109-123.	1.3	65
192	Dating the culmination of river aggradation at the end of the last glaciation using distal tephra compositions, eastern North Island, New Zealand. Geomorphology, 2001, 38, 133-151.	1.1	57
193	Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji. New Zealand Journal of Geology, and Geophysics, 2001, 44, 417-437.	1.0	21
194	A probabilistic assessment of eruption recurrence on Taveuni volcano, Fiji. Bulletin of Volcanology, 2001, 63, 274-288.	1.1	44
195	Impacts of volcanism on pre-European inhabitants of Taveuni, Fiji. Bulletin of Volcanology, 2000, 62, 199-213.	1.1	22
196	Fluoride: A review of its fate, bioavailability, and risks of fluorosis in grazedâ€pasture systems in New Zealand. New Zealand Journal of Agricultural Research, 2000, 43, 295-321.	0.9	186
197	Transformation, internal stratification, and depositional processes within a channelised, multiâ€peaked lahar flow. New Zealand Journal of Geology, and Geophysics, 2000, 43, 117-128.	1.0	39
198	Dynamic interactions between lahars and stream flow: A case study from Ruapehu volcano, New Zealand. Bulletin of the Geological Society of America, 1999, 111, 28-38.	1.6	67

#	Article	IF	CITATIONS
199	Agronomic impact of tephra fallout from the 1995 and 1996 Ruapehu Volcano eruptions, New Zealand. Environmental Geology, 1998, 34, 21-30.	1.2	103
200	1995 Ruapehu lahars in relation to the late Holocene lahars of Whangaehu River, New Zealand. New Zealand Journal of Geology, and Geophysics, 1997, 40, 507-520.	1.0	39
201	Methods of identifying late Quaternary rhyolitic tephras on the ring plains of Ruapehu and Tongariro volcanoes, New Zealand. New Zealand Journal of Geology, and Geophysics, 1997, 40, 175-184.	1.0	25
202	A late Quaternary stratigraphic framework for the northeastern Ruapehu and eastern Tongariro ring plains, New Zealand. New Zealand Journal of Geology, and Geophysics, 1997, 40, 185-197.	1.0	44
203	Impact of Ruapehu ash fall on soil and pasture nutrient status 1. October 1995 eruptions. New Zealand Journal of Agricultural Research, 1997, 40, 383-395.	0.9	24
204	Lahar history and hazard of the Tongariro River, northeastern Tongariro Volcanic Centre, New Zealand. New Zealand Journal of Geology, and Geophysics, 1997, 40, 383-393.	1.0	23
205	Changes in Whangaehu river lahar characteristics during the 1995 eruption sequence, Ruapehu volcano, New Zealand. Journal of Volcanology and Geothermal Research, 1997, 76, 47-61.	0.8	96
206	Geological history of the north-eastern ring plain of Ruapehu volcano, New Zealand. Quaternary International, 1996, 34-36, 21-28.	0.7	36
207	Investigation of an aggrading paleosol developed into andesitic ring-plain deposits, Ruapehu volcano, New Zealand. Geoderma, 1996, 69, 119-135.	2.3	13
208	A multiple-parameter approach to andesitic tephra correlation, Ruapehu volcano, New Zealand. Journal of Volcanology and Geothermal Research, 1996, 72, 199-215.	0.8	37
209	Sourcing and identifying andesitic tephras using major oxide titanomagnetite and hornblende chemistry, Egmont volcano and Tongariro Volcanic Centre, New Zealand. Bulletin of Volcanology, 1996, 58, 33-40.	1.1	32
210	Unusual "snow slurry―lahars from Ruapehu volcano, New Zealand, September 1995. Geology, 1996, 24, 1107.	2.0	36
211	Geochemical patterns of late Cenozoic intraplate basaltic volcanism in northern New Zealand and their relationship to the behaviour of the mantle. New Zealand Journal of Geology, and Geophysics, 0, , 1-12.	1.0	7
212	Auckland Volcanic Field magmatism, volcanism, and hazard: a review. New Zealand Journal of Geology, and Geophysics, 0, , 1-22.	1.0	36
213	The geological history and hazards of a long-lived stratovolcano, Mt. Taranaki, New Zealand. New Zealand Journal of Geology, and Geophysics, 0, , 1-23.	1.0	12
214	Probabilistic Volcanic Hazard Assessment of the 22.5–28°S Segment of the Central Volcanic Zone of the Andes. Frontiers in Earth Science, 0, 10, .	0.8	5