## Robert Kerr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1196677/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Highly stable lithium anodes from recycled hemp textile. Chemical Communications, 2022, 58, 1946-1949.                                                                                                                                                                      | 4.1  | 4         |
| 2  | Effect of vinylene carbonate electrolyte additive and battery cycling protocol on the electrochemical and cyclability performance of silicon thin-film anodes. Journal of Energy Storage, 2022, 46, 103868.                                                                 | 8.1  | 6         |
| 3  | Morphological Evolution and Solid–Electrolyte Interphase Formation on<br>LiNi <sub>0.6</sub> Mn <sub>0.2</sub> Co <sub>0.2</sub> O <sub>2</sub> Cathodes Using Highly<br>Concentrated Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 13196-13205. | 8.0  | 9         |
| 4  | Fast Charge and High Stability of Solidâ€5tate Graphite Organic Ionic Plastic Crystal Composite Anodes.<br>Batteries and Supercaps, 2022, 5, .                                                                                                                              | 4.7  | 5         |
| 5  | Cover Picture: Fast Charge and High Stability of Solidâ€State Graphite Organic Ionic Plastic Crystal<br>Composite Anodes (Batteries & Supercaps 7/2022). Batteries and Supercaps, 2022, 5, .                                                                                | 4.7  | 1         |
| 6  | Understanding the Role of Separator and Electrolyte Compatibility on Lithium Metal Anode<br>Performance Using Ionic Liquid-Based Electrolytes. ACS Applied Energy Materials, 2021, 4, 6310-6323.                                                                            | 5.1  | 12        |
| 7  | Tuning the Formation and Structure of the Silicon Electrode/Ionic Liquid Electrolyte Interphase in Superconcentrated Ionic Liquids. ACS Applied Materials & Interfaces, 2021, 13, 28281-28294.                                                                              | 8.0  | 21        |
| 8  | Improving Cycle Life through Fast Formation Using a Superconcentrated Phosphonium Based Ionic<br>Liquid Electrolyte for Anode-Free and Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4,<br>6399-6407.                                                        | 5.1  | 16        |
| 9  | Doped and reactive silicon thin film anodes for lithium ion batteries: A review. Journal of Power Sources, 2021, 506, 230194.                                                                                                                                               | 7.8  | 40        |
| 10 | Application of super-concentrated phosphonium based ionic liquid electrolyte for anode-free lithium metal batteries. Sustainable Energy and Fuels, 2021, 5, 4141-4152.                                                                                                      | 4.9  | 11        |
| 11 | Physical Vapor Deposition Cluster Arrival Energy Enhances the Electrochemical Performance of Silicon Thin-Film Anodes for Li-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 12243-12256.                                                                             | 5.1  | 3         |
| 12 | Solid (cyanomethyl)trimethylammonium salts for electrochemically stable electrolytes for lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 14721-14735.                                                                                                   | 10.3 | 9         |
| 13 | Compressively Stressed Silicon Nanoclusters as an Antifracture Mechanism for High-Performance<br>Lithium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2020, 12, 39195-39204.                                                                                     | 8.0  | 11        |
| 14 | Enhanced ion transport in an ether aided super concentrated ionic liquid electrolyte for long-life<br>practical lithium metal battery applications. Journal of Materials Chemistry A, 2020, 8, 18826-18839.                                                                 | 10.3 | 40        |
| 15 | Toward Highâ€Energyâ€Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic<br>Electrolytes. Advanced Materials, 2020, 32, e1905219.                                                                                                               | 21.0 | 154       |
| 16 | Macrophase-Separated Organic Ionic Plastic Crystals/PAMPS-Based Ionomer Electrolyte: A New Design<br>Perspective for Flexible and Highly Conductive Solid-State Electrolytes. ACS Omega, 2020, 5, 2931-2938.                                                                | 3.5  | 4         |
| 17 | Structuring PEDOT Hollow Nanosphere Electrodes for High Specific Energy Li-Metal   Polymer<br>Thin-Film Batteries. ACS Applied Nano Materials, 2020, 3, 3820-3828.                                                                                                          | 5.0  | 5         |
| 18 | Editors' Choice—Understanding the Superior Cycling Performance of Si Anode in Highly<br>Concentrated Phosphonium-Based Ionic Liquid Electrolyte. Journal of the Electrochemical Society,<br>2020, 167, 120520.                                                              | 2.9  | 23        |

**ROBERT KERR** 

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Electrochemical Formation in Super-Concentrated Phosphonium Based Ionic Liquid Electrolyte Using<br>Symmetric Li-Metal Coin Cells. Journal of the Electrochemical Society, 2020, 167, 120526.                                | 2.9  | 16        |
| 20 | Toward Practical Li Metal Batteries: Importance of Separator Compatibility Using Ionic Liquid<br>Electrolytes. ACS Applied Energy Materials, 2019, 2, 6655-6663.                                                             | 5.1  | 29        |
| 21 | Artificial SEI Transplantation: A Pathway to Enabling Lithium Metal Cycling in Water-Containing<br>Electrolytes. ACS Applied Energy Materials, 2019, 2, 8912-8918.                                                           | 5.1  | 6         |
| 22 | Enabling High Lithium Conductivity in Polymerized Ionic Liquid Block Copolymer Electrolytes.<br>Batteries and Supercaps, 2019, 2, 132-138.                                                                                   | 4.7  | 28        |
| 23 | Pure silicon thin-film anodes for lithium-ion batteries: A review. Journal of Power Sources, 2019, 414, 48-67.                                                                                                               | 7.8  | 147       |
| 24 | Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt. Journal of Chemical Physics, 2018, 148, 193813.                                                                 | 3.0  | 17        |
| 25 | Towards thermally stable high performance lithium-ion batteries: the combination of a phosphonium cation ionic liquid and a 3D porous molybdenum disulfide/graphene electrode. Chemical Communications, 2018, 54, 5338-5341. | 4.1  | 10        |
| 26 | Water-tolerant lithium metal cycling in high lithium concentration phosphonium-based ionic liquid<br>electrolytes. Sustainable Energy and Fuels, 2018, 2, 2276-2283.                                                         | 4.9  | 27        |
| 27 | Understanding of the Electrogenerated Bulk Electrolyte Species in Sodium-Containing Ionic Liquid Electrolytes During the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2017, 121, 23307-23316.                 | 3.1  | 17        |
| 28 | High-Capacity Retention of Si Anodes Using a Mixed Lithium/Phosphonium Bis(fluorosulfonyl)imide<br>Ionic Liquid Electrolyte. ACS Energy Letters, 2017, 2, 1804-1809.                                                         | 17.4 | 38        |
| 29 | Lifetime and degradation of high temperature PEM membrane electrode assemblies. International<br>Journal of Hydrogen Energy, 2015, 40, 16860-16866.                                                                          | 7.1  | 33        |
| 30 | The Reduction of Oxygen on Iron(II) Oxide/Poly(3,4-ethylenedioxythiophene) Composite Thin Film<br>Electrodes. Electrochimica Acta, 2015, 154, 142-148.                                                                       | 5.2  | 24        |
| 31 | Tuning the morphology of electroactive polythiophene nano-structures. Reactive and Functional Polymers, 2015, 86, 60-66.                                                                                                     | 4.1  | 7         |
| 32 | Performance of the High Temperature PEM Membrane Electrode Assembly. ECS Transactions, 2014, 64, 973-982.                                                                                                                    | 0.5  | 3         |
| 33 | Novel polymerisation of conducting thienothiophenes via vapour phase polymerisation: a comparative study. RSC Advances, 2014, 4, 57754-57758.                                                                                | 3.6  | 2         |
| 34 | Determining the platinum loading and distribution of industrial scale polymer electrolyte membrane<br>fuel cell electrodes using low energy X-ray imaging. Journal of Power Sources, 2014, 270, 208-212.                     | 7.8  | 4         |
| 35 | Alcohol vapour detection at the three phase interface using enzyme-conducting polymer composites.<br>Biosensors and Bioelectronics, 2014, 52, 143-146.                                                                       | 10.1 | 17        |
| 36 | Influence of the Polymerization Method on the Oxygen Reduction Reaction Pathway on PEDOT. ECS Electrochemistry Letters, 2013, 2, F29-F31.                                                                                    | 1.9  | 31        |

**ROBERT KERR** 

| #  | Article                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | PdNi Hollow Nanoparticles for Improved Electrocatalytic Oxygen Reduction in Alkaline<br>Environments. ACS Applied Materials & Interfaces, 2013, 5, 12708-12715. | 8.0 | 108       |
| 38 | Designed electrodeposition of nanoparticles inside conducting polymers. Journal of Materials Chemistry, 2012, 22, 19767.                                        | 6.7 | 32        |
| 39 | Dye-sensitized nickel(II)oxide photocathodes for tandem solar cell applications. Nanotechnology, 2008, 19, 295304.                                              | 2.6 | 160       |