RafaÅ, A Bachorz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11966034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strong Nâ^'H··ĤE Hydrogen Bonding in Amideâ^'Benzene Interactions. Journal of Physical Chemistry B, 2009, 113, 2937-2943.	2.6	105
2	The MP2â€F12 method in the T <scp>URBOMOLE</scp> program package. Journal of Computational Chemistry, 2011, 32, 2492-2513.	3.3	98
3	Scope and limitations of the SCS-MP2 method for stacking and hydrogen bonding interactions. Physical Chemistry Chemical Physics, 2008, 10, 2758.	2.8	80
4	Stabilization of very rare tautomers of uracil by an excess electron. Physical Chemistry Chemical Physics, 2005, 7, 2116.	2.8	73
5	Electron-Driven Acid-Base Chemistry: Proton Transfer from Hydrogen Chloride to Ammonia. Science, 2008, 319, 936-939.	12.6	73
6	Nucleobase–Fluorobenzene Interactions: Hydrogen Bonding Wins over π Stacking. Angewandte Chemie - International Edition, 2007, 46, 7449-7452.	13.8	66
7	Accurate computational thermochemistry from explicitly correlated coupled-cluster theory. Theoretical Chemistry Accounts, 2010, 126, 289-304.	1.4	64
8	Coupled-cluster and explicitly correlated perturbation-theory calculations of the uracil anion. Journal of Chemical Physics, 2007, 126, 085101.	3.0	63
9	Photoelectron spectroscopy of adiabatically bound valence anions of rare tautomers of the nucleic acid bases. Journal of Chemical Physics, 2007, 127, 174309.	3.0	59
10	On the Unusual Stability of Valence Anions of Thymine Based on Very Rare Tautomers:Â A Computational Study. Journal of Physical Chemistry B, 2006, 110, 24696-24707.	2.6	44
11	Photoelectron spectrum of valence anions of uracil and first-principles calculations of excess electron binding energies. Journal of Chemical Physics, 2008, 129, 054309.	3.0	40
12	The cardenolides strophanthidin, digoxigenin and dihydroouabain act as activators of the human RORÎ ³ /RORÎ ³ T receptors. Toxicology Letters, 2018, 295, 314-324.	0.8	24
13	Anion of the formic acid dimer as a model for intermolecular proton transfer induced by a π* excess electron. Journal of Chemical Physics, 2005, 122, 204304.	3.0	23
14	Digoxin, an Overlooked Agonist of RORγ/RORγT. Frontiers in Pharmacology, 2018, 9, 1460.	3.5	19
15	Stable Valence Anions of Nucleic Acid Bases and DNA Strand Breaks Induced by Low Energy Electrons. Challenges and Advances in Computational Chemistry and Physics, 2008, , 619-667.	0.6	15
16	Cardiac glycosides with target at direct and indirect interactions with nuclear receptors. Biomedicine and Pharmacotherapy, 2020, 127, 110106.	5.6	15
17	Large-amplitude vibrations of an N–Hâ< [−] Ï€ hydrogen bonded cis-amide–benzene complex. Physical Chemistry Chemical Physics, 2010, 12, 8208.	2.8	14
18	Accurate Coupled Cluster Calculations of the Reaction Barrier Heights of Two CH ₃ [•] + CH ₄ Reactions. Journal of Physical Chemistry A, 2009, 113, 11679-11684.	2.5	10

#	Article	IF	CITATIONS
19	The Dichotomous Nature of AZ5104 (an EGFR Inhibitor) Towards RORγ and RORγT. International Journal of Molecular Sciences, 2019, 20, 5780.	4.1	10
20	Identification of Corosolic and Oleanolic Acids as Molecules Antagonizing the Human RORÎ ³ T Nuclear Receptor Using the Calculated Fingerprints of the Molecular Similarity. International Journal of Molecular Sciences, 2022, 23, 1906.	4.1	6