Jun Nagai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11965937/publications.pdf

Version: 2024-02-01

471509 552781 1,515 26 17 26 citations h-index g-index papers 26 26 26 2015 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reducing Astrocyte Calcium Signaling InÂVivo Alters Striatal Microcircuits and Causes Repetitive Behavior. Neuron, 2018, 99, 1170-1187.e9.	8.1	234
2	Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue. Cell, 2019, 177, 1280-1292.e20.	28.9	228
3	A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP. Nature Communications, 2019, 10, 711.	12.8	185
4	Improved tools to study astrocytes. Nature Reviews Neuroscience, 2020, 21, 121-138.	10.2	178
5	Behaviorally consequential astrocytic regulation of neural circuits. Neuron, 2021, 109, 576-596.	8.1	150
6	Context-Specific Striatal Astrocyte Molecular Responses Are Phenotypically Exploitable. Neuron, 2020, 108, 1146-1162.e10.	8.1	73
7	CRMP4 suppresses apical dendrite bifurcation of CA1 pyramidal neurons in the mouse hippocampus. Developmental Neurobiology, 2012, 72, 1447-1457.	3.0	58
8	Specific and behaviorally consequential astrocyte Gq GPCR signaling attenuation inÂvivo with il²ARK. Neuron, 2021, 109, 2256-2274.e9.	8.1	47
9	Coordination of escape and spatial navigation circuits orchestrates versatile flight from threats. Neuron, 2021, 109, 1848-1860.e8.	8.1	47
10	Inhibition of CRMP2 phosphorylation repairs CNS by regulating neurotrophic and inhibitory responses. Experimental Neurology, 2016, 277, 283-295.	4.1	44
11	Phosphorylation of CRMP2 is involved in proper bifurcation of the apical dendrite of hippocampal CA1 pyramidal neurons. Developmental Neurobiology, 2013, 73, 142-151.	3.0	34
12	Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation. Scientific Reports, 2015, 5, 8269.	3.3	34
13	Phosphorylation of CRMP2 by Cdk5 Regulates Dendritic Spine Development of Cortical Neuron in the Mouse Hippocampus. Neural Plasticity, 2016, 2016, 1-7.	2.2	33
14	CRMPs Function in Neurons and Glial Cells: Potential Therapeutic Targets for Neurodegenerative Diseases and CNS Injury. Molecular Neurobiology, 2017, 54, 4243-4256.	4.0	29
15	CRMP4 mediates MAG-induced inhibition of axonal outgrowth and protection against Vincristine-induced axonal degeneration. Neuroscience Letters, 2012, 519, 56-61.	2.1	20
16	Lanthionine ketimine ester promotes locomotor recovery after spinal cord injury by reducing neuroinflammation and promoting axon growth. Biochemical and Biophysical Research Communications, 2017, 483, 759-764.	2.1	20
17	Deletion of Crmp4 attenuates CSPG-induced inhibition of axonal growth and induces nociceptive recovery after spinal cord injury. Molecular and Cellular Neurosciences, 2016, 74, 42-48.	2.2	17
18	Genetic inhibition of CRMP2 phosphorylation at serine 522 promotes axonal regeneration after optic nerve injury. Scientific Reports, 2019, 9, 7188.	3.3	17

#	Article	IF	CITATIONS
19	Genetic suppression of collapsin response mediator protein 2 phosphorylation improves outcome in methylâ€4â€phenylâ€1,2,3,6â€tetrahydropyridineâ€induced Parkinson's model mice. Genes To Cells, 2019, 2	4 <mark>1.2</mark> 1-40.	16
20	Loss of collapsin response mediator protein 4 suppresses dopaminergic neuron death in an 1â€methylâ€4â€phenylâ€1,2,3,6â€tetrahydropyridineâ€induced mouse model of Parkinson's disease. Journal of Neurochemistry, 2016, 137, 795-805.	3.9	14
21	CRMP1 and CRMP4 are required for proper orientation of dendrites of cerebral pyramidal neurons in the developing mouse brain. Brain Research, 2017, 1655, 161-167.	2.2	11
22	Genetic inhibition of CRMP2 phosphorylation delays Wallerian degeneration after optic nerve injury. Biochemical and Biophysical Research Communications, 2019, 514, 1037-1039.	2.1	9
23	Phosphorylation of CRMP2 is required for migration and positioning of Purkinje cells: Redundant roles of CRMP1 and CRMP4. Brain Research, 2020, 1736, 146762.	2.2	6
24	Lanthionine ketimine ester improves outcome in an MPTP-induced mouse model of Parkinson's disease via suppressions of CRMP2 phosphorylation and microglial activation. Journal of the Neurological Sciences, 2020, 413, 116802.	0.6	6
25	Cdk5 is required for the positioning and survival of GABAergic neurons in developing mouse striatum. Developmental Neurobiology, 2017, 77, 483-492.	3.0	3
26	Requirement of CRMP2 Phosphorylation in Neuronal Migration of Developing Mouse Cerebral Cortex and Hippocampus and Redundant Roles of CRMP1 and CRMP4. Cerebral Cortex, 2022, 32, 520-527.	2.9	2