
Natalie V Wheeler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11965250/publications.pdf Version: 2024-02-01

NATALIE V WHEELED

#	Article	IF	CITATIONS
1	Antiresonant Hollow Core Fiber With an Octave Spanning Bandwidth for Short Haul Data Communications. Journal of Lightwave Technology, 2017, 35, 437-442.	4.6	96
2	Mid-infrared gas filled photonic crystal fiber laser based on population inversion. Optics Express, 2011, 19, 2309.	3.4	87
3	High Capacity Mode-Division Multiplexed Optical Transmission in a Novel 37-cell Hollow-Core Photonic Bandgap Fiber. Journal of Lightwave Technology, 2014, 32, 854-863.	4.6	74
4	Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core–photonic-bandgap fiber. Optics Letters, 2014, 39, 295.	3.3	65
5	High-Capacity Directly Modulated Optical Transmitter for 2-μm Spectral Region. Journal of Lightwave Technology, 2015, 33, 1373-1379.	4.6	65
6	Multi-kilometer Long, Longitudinally Uniform Hollow Core Photonic Bandgap Fibers for Broadband Low Latency Data Transmission. Journal of Lightwave Technology, 2016, 34, 104-113.	4.6	64
7	Fabrication of tubular anti-resonant hollow core fibers: modelling, draw dynamics and process optimization. Optics Express, 2019, 27, 20567.	3.4	51
8	Double photonic bandgap hollow-core photonic crystal fiber. Optics Express, 2009, 17, 16238.	3.4	37
9	Anti-resonant hexagram hollow core fibers. Optics Express, 2015, 23, 1289.	3.4	36
10	Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers. Optics Express, 2018, 26, 8866.	3.4	35
11	Lotus-Shaped Negative Curvature Hollow Core Fiber With 10.5 dB/km at 1550 nm Wavelength. Journal of Lightwave Technology, 2018, 36, 1213-1219.	4.6	26
12	Acetylene frequency references in gas-filled hollow optical fiber and photonic microcells. Applied Optics, 2013, 52, 5430.	1.8	24
13	Accurate modelling of fabricated hollow-core photonic bandgap fibers. Optics Express, 2015, 23, 23117.	3.4	24
14	Extruded tellurite antiresonant hollow core fiber for Mid-IR operation. Optics Express, 2020, 28, 16542.	3.4	23
15	Large-core acetylene-filled photonic microcells made by tapering a hollow-core photonic crystal fiber. Optics Letters, 2010, 35, 1875.	3.3	20
16	Slow and Superluminal Light Pulses Via EIT in a 20-m Acetylene-Filled Photonic Microcell. Journal of Lightwave Technology, 2010, 28, 870-875.	4.6	20
17	Super-broadband on-chip continuous spectral translation unlocking coherent optical communications beyond conventional telecom bands. Nature Communications, 2022, 13, .	12.8	18
18	Modal content in hypocycloid Kagomé hollow core photonic crystal fibers. Optics Express, 2016, 24, 15798.	3.4	17

NATALIE V WHEELER

#	Article	IF	CITATIONS
19	Laser frequency stabilization and spectroscopy at 2051 nm using a compact CO ₂ -filled Kagome hollow core fiber gas-cell system. Optics Express, 2018, 26, 28621.	3.4	15
20	Real-time prediction of structural and optical properties of hollow-core photonic bandgap fibers during fabrication. Optics Letters, 2013, 38, 1382.	3.3	14
21	Development of a gasâ€phase Raman instrument using a hollow core antiâ€resonant tubular fibre. Journal of Raman Spectroscopy, 2021, 52, 1772-1782.	2.5	13
22	Data transmission through up to 74.8 km of hollow-core fiber with coherent and direct-detect transceivers. , 2015, , .		8
23	Anti-Resonant, Mid-Infrared Silica Hollow-Core Fiber. , 2020, , .		8
24	Hollow-core fiber delivery of broadband mid-infrared light for remote spectroscopy. Optics Express, 2022, 30, 7044.	3.4	7
25	Extruded Antiresonant Hollow Core Fibers for Mid-IR Laser Delivery. , 2020, , .		3
26	Accurate Loss and Surface Mode Modeling in Fabricated Hollow-Core Photonic Bandgap Fibers. , 2014, , ,		2
27	Virtual Draw of Tubular Hollow-Core Fibers. , 2018, , .		2
28	Growth of Ammonium Chloride on Cleaved End-Facets of Hollow Core Fibers. , 2020, , .		2
29	High sensitivity gas detection using Hollow Core Photonic Bandgap Fibres designed for mid-IR operation. , 2014, , .		1
30	Reflecting photonics: reaching new audiences through new partnerships – IYL 2015 and the Royal Horticultural Society Flower Show. Proceedings of SPIE, 2016, , .	0.8	1
31	Hollow-Core-Fiber Delivery of Broadband Mid-Infrared Light for Remote Multi-Species Spectroscopy. , 2021, , .		0
32	Hollow-Core-Fiber Delivery of Broadband Mid-Infrared Light for Remote Multi-Species Spectroscopy. , 2021, , .		0