Jane E Clark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11965133/publications.pdf

Version: 2024-02-01

		218677	223800
74	2,482	26	46
papers	citations	h-index	g-index
75	75	75	2112
75	75	75	2113
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Sequence Structure Has a Differential Effect on Underlying Motor Learning Processes. Journal of Motor Learning and Development, 2021, 9, 38-57.	0.4	3
2	The Past Is Prologue: A Developmental Kinesiologist's Journey Up a Mountain. Kinesiology Review, 2021, 10, 217-224.	0.6	0
3	Motor Development: A Perspective on the Past, the Present, and the Future. Kinesiology Review, 2021, 10, 264-273.	0.6	3
4	NCS Assessments of the Motor, Sensory, and Physical Health Domains. Frontiers in Pediatrics, 2021, 9, 622542.	1.9	0
5	Beyond the mean reaction time: Trial-by-trial reaction time reveals the distraction effect on perceptual-motor sequence learning. Cognition, 2020, 202, 104287.	2.2	1
6	Motor Development Research: I. The Lessons of History Revisited (the 18th to the 20th Century). Journal of Motor Learning and Development, 2020, 8, 345-362.	0.4	8
7	Motor Development Research: II. The First Two Decades of the 21st Century Shaping Our Future. Journal of Motor Learning and Development, 2020, 8, 363-390.	0.4	8
8	Reflections on Motor Development Research Across the 20th Century: Six Empirical Studies That Changed the Field. Journal of Motor Learning and Development, 2020, 8, 438-454.	0.4	1
9	The "Motor" in Implicit Motor Sequence Learning: A Foot-stepping Serial Reaction Time Task. Journal of Visualized Experiments, 2018, , .	0.3	5
10	A Perception–Action Approach to Understanding Typical and Atypical Motor Development. Advances in Child Development and Behavior, 2018, 55, 245-272.	1.3	9
11	Can the MABC discriminate and predict motor impairment? A comparison of Brazilian and American children. International Journal of Therapy and Rehabilitation, 2017, 24, 105-113.	0.3	15
12	Timing at peak force may be the hidden target controlled in continuation and synchronization tapping. Experimental Brain Research, 2017, 235, 1541-1554.	1.5	4
13	Pentimento: A 21st Century View on the Canvas of Motor Development. Kinesiology Review, 2017, 6, 232-239.	0.6	15
14	New insights into statistical learning and chunk learning in implicit sequence acquisition. Psychonomic Bulletin and Review, 2017, 24, 1225-1233.	2.8	14
15	Children and Adults Both Learn Motor Sequences Quickly, But Do So Differently. Frontiers in Psychology, 2017, 08, 158.	2.1	18
16	Probabilistic Motor Sequence Yields Greater Offline and Less Online Learning than Fixed Sequence. Frontiers in Human Neuroscience, 2016, 10, 87.	2.0	18
17	Children with developmental coordination disorder (DCD) can adapt to perceptible and subliminal rhythm changes but are more variable. Human Movement Science, 2016, 50, 19-29.	1.4	23
18	Developmental Coordination Disorder from a Dynamic Systems Perspective: What is on offer?. Current Developmental Disorders Reports, 2016, 3, 94-96.	2.1	6

#	Article	IF	Citations
19	Development of adaptive sensorimotor control in infant sitting posture. Gait and Posture, 2016, 45, 157-163.	1.4	7
20	The SB-ST decomposition in the study of Developmental Coordination Disorder. , 2015, , .		0
21	Development of kinesthetic-motor and auditory-motor representations in school-aged children. Experimental Brain Research, 2015, 233, 2181-2194.	1.5	5
22	Development of interactions between sensorimotor representations in school-aged children. Human Movement Science, 2014, 34, 164-177.	1.4	23
23	Differences in movement-related cortical activation patterns underlying motor performance in children with and without developmental coordination disorder. Journal of Neurophysiology, 2013, 109, 3041-3050.	1.8	26
24	Development of state estimation explains improvements in sensorimotor performance across childhood. Journal of Neurophysiology, 2012, 107, 3040-3049.	1.8	25
25	Developmental delay of finger torque control in children with developmental coordination disorder. Developmental Medicine and Child Neurology, 2012, 54, 932-937.	2.1	7
26	Development of Multisensory Reweighting Is Impaired for Quiet Stance Control in Children with Developmental Coordination Disorder (DCD). PLoS ONE, 2012, 7, e40932.	2.5	37
27	Beyond age and gender: Relationships between cortical and subcortical brain volume and cognitive-motor abilities in school-age children. Neurolmage, 2011, 54, 3093-3100.	4.2	115
28	Children with Developmental Coordination Disorder benefit from using vision in combination with touch information for quiet standing. Gait and Posture, 2011, 34, 183-190.	1.4	45
29	Statistically characterizing intra- and inter-individual variability in children with Developmental Coordination Disorder. Research in Developmental Disabilities, 2011, 32, 1388-1398.	2.2	19
30	Auditory and visual information do not affect self-paced bilateral finger tapping in children with DCD. Human Movement Science, 2011, 30, 658-671.	1.4	22
31	Multisensory adaptation of spatial-to-motor transformations in children with developmental coordination disorder. Experimental Brain Research, 2011, 212, 257-265.	1.5	16
32	Electrocortical Dynamics Reflect Age-Related Differences in Movement Kinematics among Children and Adults. Cerebral Cortex, 2011, 21, 737-747.	2.9	16
33	Improvements in proprioceptive functioning influence multisensory-motor integration in 7- to 13-year-old children. Neuroscience Letters, 2010, 483, 36-40.	2.1	33
34	Evidence for Multisensory Spatial-to-Motor Transformations in Aiming Movements of Children. Journal of Neurophysiology, 2009, 101, 315-322.	1.8	25
35	The development of infant upright posture: sway less or sway differently?. Experimental Brain Research, 2008, 186, 293-303.	1.5	48
36	Multi-limb coordination and rhythmic variability under varying sensory availability conditions in children with DCD. Human Movement Science, 2008, 27, 256-269.	1.4	41

#	Article	IF	CITATIONS
37	Age-related changes in multi-finger interactions in adults during maximum voluntary finger force production tasks. Human Movement Science, 2008, 27, 714-727.	1.4	32
38	Temporal variability in continuous versus discontinuous drawing for children with Developmental Coordination Disorder. Neuroscience Letters, 2008, 431, 215-220.	2.1	33
39	Kinesiology in the 21st Century: A Preface. Quest, 2008, 60, 1-2.	1.2	11
40	Continuous and Discontinuous Drawing: High Temporal Variability Exists Only in Discontinuous Circling in Young Children. Journal of Motor Behavior, 2008, 40, 391-399.	0.9	12
41	A Cerebellar Deficit in Sensorimotor Prediction Explains Movement Timing Variability. Journal of Neurophysiology, 2008, 100, 2825-2832.	1.8	50
42	The Academy Promotes, Unifies, and Evaluates Doctoral Education in Kinesiology. Quest, 2007, 59, 174-194.	1.2	20
43	On the Problem of Motor Skill Development. Journal of Physical Education, Recreation and Dance, 2007, 78, 39-44.	0.3	108
44	Two steps forward and one back: Learning to walk affects infants' sitting posture. , 2007, 30, 16-25.		34
45	Hand digit control in children: age-related changes in hand digit force interactions during maximum flexion and extension force production tasks. Experimental Brain Research, 2007, 176, 374-386.	1.5	31
46	Development of multisensory reweighting for posture control in children. Experimental Brain Research, 2007, 183, 435-446.	1.5	89
47	Effect of kinetic redundancy on hand digit control in children with DCD. Neuroscience Letters, 2006, 410, 42-46.	2.1	24
48	Development of visuomotor representations for hand movement in young children. Experimental Brain Research, 2005, 162, 155-164.	1.5	73
49	Developmental Coordination Disorder: Issues, Identification, and Intervention. Journal of Physical Education, Recreation and Dance, 2005, 76, 49-53.	0.3	8
50	From the Beginning: A Developmental Perspective on Movement and Mobility. Quest, 2005, 57, 37-45.	1.2	94
51	Visuomotor Adaptation in Children with Developmental Coordination Disorder. Motor Control, 2004, 8, 450-460.	0.6	67
52	Postural control in children. Experimental Brain Research, 2003, 150, 434-442.	1.5	94
53	The Changing Role of Mentoring the Future Professorate With Special Attention to Being a Low-Consensus Discipline. Quest, 2003, 55, 51-61.	1.2	12
54	Sensory information affords exploration of posture in newly walking infants and toddlers. , 2000, 23, 391-405.		34

#	Article	IF	CITATIONS
55	An examination of constraints affecting the intralimb coordination of hemiparetic gait. Human Movement Science, 2000, 19, 251-273.	1.4	69
56	The use of somatosensory information during the acquisition of independent upright stance. , 1999, 22, 87-102.		73
57	On Becoming Skillful: Patterns and Constraints. Research Quarterly for Exercise and Sport, 1995, 66, 173-183.	1.4	76
58	For Young Jumpers, Differences are in the Movement's Control, Not its Coordination. Research Quarterly for Exercise and Sport, 1994, 65, 258-268.	1.4	38
59	A Longitudinal Study of Intralimb Coordination in the First Year of Independent Walking: A Dynamical Systems Analysis. Child Development, 1993, 64, 1143.	3.0	136
60	A Longitudinal Study of Intralimb Coordination in the First Year of Independent Walking: A Dynamical Systems Analysis. Child Development, 1993, 64, 1143-1157.	3.0	119
61	Chapter 14 Locomotor Coordination in Infancy: The Transition from Walking to Running. Advances in Psychology, 1993, , 359-393.	0.1	6
62	The development of intralimb coordination in the first six months of walking. Advances in Psychology, 1991, 81, 245-257.	0.1	9
63	Understanding Motor Development: Infants, Children, Adolescents (2nd Edition). Pediatric Exercise Science, 1990, 2, 281-282.	1.0	1
64	A Dynamical Systems Approach to Understanding the Development of Lower Limb Coordination in Locomotion., 1990,, 363-378.		15
65	What Is Motor Development? The Lessons of History. Quest, 1989, 41, 183-202.	1.2	74
66	Developmental stability in jumping Developmental Psychology, 1989, 25, 929-935.	1.6	27
67	Human interlimb coordination: The first 6 months of independent walking. Developmental Psychobiology, 1988, 21, 445-456.	1.6	114
68	The Step Cycle Organization of Infant Walkers. Journal of Motor Behavior, 1987, 19, 421-433.	0.9	25
69	Jumping Coordination Patterns of Mildly Mentally Retarded Children. Adapted Physical Activity Quarterly, 1987, 4, 178-191.	0.8	10
70	The Effects of Videogame Playing on the Response Selection Processing of Elderly Adults. Journal of Gerontology, 1987, 42, 82-85.	1.9	155
71	Movement Skill Development. Adapted Physical Activity Quarterly, 1985, 2, 353-355.	0.8	0
72	Static Balance in Young Children. Child Development, 1984, 55, 854.	3.0	18

#	Article	IF	CITATIONS
73	Developmental Differences in Response Processing. Journal of Motor Behavior, 1982, 14, 247-254.	0.9	27
74	Young Children's Ability to Use Precued Information to Select and Maintain a Response. Perceptual and Motor Skills, 1981, 52, 655-658.	1.3	3