
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11964887/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A MicroRNA Signature Associated with Prognosis and Progression in Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2005, 353, 1793-1801.	13.9	2,255
2	MicroRNAs in Cancer. Annual Review of Medicine, 2009, 60, 167-179.	5.0	1,702
3	MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15805-15810.	3.3	1,538
4	Targeting microRNAs in cancer: rationale, strategies and challenges. Nature Reviews Drug Discovery, 2010, 9, 775-789.	21.5	1,308
5	A MicroRNA Signature of Hypoxia. Molecular and Cellular Biology, 2007, 27, 1859-1867.	1.1	990
6	MiR-15a and miR-16-1 cluster functions in human leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5166-5171.	3.3	741
7	MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood, 2009, 113, 6411-6418.	0.6	729
8	MicroRNA expression and function in cancer. Trends in Molecular Medicine, 2006, 12, 580-587.	3.5	699
9	MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood, 2008, 111, 3183-3189.	0.6	575
10	NF-κB–YY1–miR-29 Regulatory Circuitry in Skeletal Myogenesis and Rhabdomyosarcoma. Cancer Cell, 2008, 14, 369-381.	7.7	573
11	miR-328 Functions as an RNA Decoy to Modulate hnRNP E2 Regulation of mRNA Translation in Leukemic Blasts. Cell, 2010, 140, 652-665.	13.5	514
12	Biological Functions of miR-29b Contribute to Positive Regulation of Osteoblast Differentiation. Journal of Biological Chemistry, 2009, 284, 15676-15684.	1.6	513
13	MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12885-12890.	3.3	507
14	Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3945-3950.	3.3	471
15	Clinical response and <i>miR-29b</i> predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7473-7478.	3.3	443
16	MicroRNA Expression in Cytogenetically Normal Acute Myeloid Leukemia. New England Journal of Medicine, 2008, 358, 1919-1928.	13.9	427
17	MicroRNA 29b functions in acute myeloid leukemia. Blood, 2009, 114, 5331-5341.	0.6	412
18	MicroRNA fingerprints during human megakaryocytopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5078-5083.	3.3	403

#	Article	IF	CITATIONS
19	Reprogramming of miRNA networks in cancer and leukemia. Genome Research, 2010, 20, 589-599.	2.4	331
20	The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood, 2011, 117, 1121-1129.	0.6	247
21	Acute Myeloid Leukemia: A Concise Review. Journal of Clinical Medicine, 2016, 5, 33.	1.0	241
22	Sp1/NFκB/HDAC/miR-29b Regulatory Network in KIT-Driven Myeloid Leukemia. Cancer Cell, 2010, 17, 333-347.	7.7	235
23	MicroRNAs in normal and malignant hematopoiesis. Current Opinion in Hematology, 2008, 15, 352-358.	1.2	227
24	Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18679-18684.	3.3	214
25	Preclinical activity of a novel CRM1 inhibitor in acute myeloid leukemia. Blood, 2012, 120, 1765-1773.	0.6	192
26	PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. Journal of Clinical Investigation, 2013, 123, 4144-4157.	3.9	192
27	Prognostic Significance of Expression of a Single MicroRNA, <i>miR-181a</i> , in Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. Journal of Clinical Oncology, 2010, 28, 5257-5264.	0.8	176
28	CXCR4 downregulation of let-7a drives chemoresistance in acute myeloid leukemia. Journal of Clinical Investigation, 2013, 123, 2395-2407.	3.9	171
29	Targeted Delivery of <i>microRNA-29b</i> by Transferrin-Conjugated Anionic Lipopolyplex Nanoparticles: A Novel Therapeutic Strategy in Acute Myeloid Leukemia. Clinical Cancer Research, 2013, 19, 2355-2367.	3.2	170
30	Clinical Role of microRNAs in Cytogenetically Normal Acute Myeloid Leukemia: <i>miR-155</i> Upregulation Independently Identifies High-Risk Patients. Journal of Clinical Oncology, 2013, 31, 2086-2093.	0.8	165
31	Aberrant Overexpression of IL-15 Initiates Large Granular Lymphocyte Leukemia through Chromosomal Instability and DNA Hypermethylation. Cancer Cell, 2012, 22, 645-655.	7.7	150
32	Epigenetics Meets Genetics in Acute Myeloid Leukemia: Clinical Impact of a Novel Seven-Gene Score. Journal of Clinical Oncology, 2014, 32, 548-556.	0.8	134
33	Bortezomib induces DNA hypomethylation and silenced gene transcription by interfering with Sp1/NF-κB–dependent DNA methyltransferase activity in acute myeloid leukemia. Blood, 2008, 111, 2364-2373.	0.6	132
34	Preclinical and clinical efficacy of XPO1/CRM1 inhibition by the karyopherin inhibitor KPT-330 in Ph+ leukemias. Blood, 2013, 122, 3034-3044.	0.6	132
35	Regulation of acute graft-versus-host disease by microRNA-155. Blood, 2012, 119, 4786-4797.	0.6	128
36	Clinical and pharmacodynamic activity of bortezomib and decitabine in acute myeloid leukemia. Blood, 2012, 119, 6025-6031.	0.6	127

#	Article	IF	CITATIONS
37	Selective inhibition of nuclear export with selinexor in patients with non-Hodgkin lymphoma. Blood, 2017, 129, 3175-3183.	0.6	126
38	miR-155 targets histone deacetylase 4 (HDAC4) and impairs transcriptional activity of B-cell lymphoma 6 (BCL6) in the Eµ-miR-155 transgenic mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20047-20052.	3.3	121
39	A phase 1 clinical trial of single-agent selinexor in acute myeloid leukemia. Blood, 2017, 129, 3165-3174.	0.6	114
40	Improved Nonrelapse Mortality and Infection Rate with Lower Dose of Antithymocyte Globulin in Patients Undergoing Reduced-Intensity Conditioning Allogeneic Transplantation for Hematologic Malignancies. Biology of Blood and Marrow Transplantation, 2009, 15, 1422-1430.	2.0	89
41	Micrornas: Emerging key regulators of hematopoiesis. American Journal of Hematology, 2010, 85, 935-942.	2.0	86
42	Dose Escalation of Lenalidomide in Relapsed or Refractory Acute Leukemias. Journal of Clinical Oncology, 2010, 28, 4919-4925.	0.8	82
43	XPO1 Inhibition using Selinexor Synergizes with Chemotherapy in Acute Myeloid Leukemia by Targeting DNA Repair and Restoring Topoisomerase IIα to the Nucleus. Clinical Cancer Research, 2016, 22, 6142-6152.	3.2	79
44	Genome-wide methylation profiling in decitabine-treated patients with acute myeloid leukemia. Blood, 2012, 120, 2466-2474.	0.6	74
45	The long non-coding RNA HOXB-AS3 regulates ribosomal RNA transcription in NPM1-mutated acute myeloid leukemia. Nature Communications, 2019, 10, 5351.	5.8	71
46	miR-146b antagomir–treated human Tregs acquire increased GVHD inhibitory potency. Blood, 2016, 128, 1424-1435.	0.6	70
47	Potential of microRNAs for cancer diagnostics, prognostication and therapy. Current Opinion in Oncology, 2012, 24, 655-659.	1.1	63
48	Lenalidomide-mediated enhanced translation of C/EBPα-p30 protein up-regulates expression of the antileukemic microRNA-181a in acute myeloid leukemia. Blood, 2013, 121, 159-169.	0.6	56
49	Functional implications of microRNAs in acute myeloid leukemia by integrating microRNA and messenger RNA expression profiling. Cancer, 2011, 117, 4696-4706.	2.0	55
50	HDAC Inhibition Induces MicroRNA-182, which Targets RAD51 and Impairs HR Repair to Sensitize Cells to Sapacitabine in Acute Myelogenous Leukemia. Clinical Cancer Research, 2016, 22, 3537-3549.	3.2	55
51	Expression and functional relevance of long non-coding RNAs in acute myeloid leukemia stem cells. Leukemia, 2019, 33, 2169-2182.	3.3	52
52	SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome. Journal of Clinical Investigation, 2014, 124, 1512-1524.	3.9	52
53	Silvestrol exhibits significant in vivo and in vitro antileukemic activities and inhibits FLT3 and miR-155 expressions in acute myeloid leukemia. Journal of Hematology and Oncology, 2013, 6, 21.	6.9	49
54	Decitabine priming enhances the antileukemic effects of exportin 1 (XPO1) selective inhibitor selinexor in acute myeloid leukemia. Blood, 2015, 125, 2689-2692.	0.6	47

RAMIRO GARZON

#	Article	IF	CITATIONS
55	Implications of the miR-10 family in chemotherapy response of NPM1-mutated AML. Blood, 2014, 123, 2412-2415.	0.6	43
56	Serum miR-29a Is Upregulated in Acute Graft-versus-Host Disease and Activates Dendritic Cells through TLR Binding. Journal of Immunology, 2017, 198, 2500-2512.	0.4	43
57	Low dose decitabine in very high risk relapsed or refractory acute myeloid leukaemia in children and young adults. British Journal of Haematology, 2013, 161, 406-410.	1.2	42
58	Potential Applications of MicroRNAs in Cancer Diagnosis, Prognosis, and Treatment. Seminars in Oncology, 2011, 38, 781-787.	0.8	40
59	Midostaurin, bortezomib and MEC in relapsed/refractory acute myeloid leukemia. Leukemia and Lymphoma, 2016, 57, 2100-2108.	0.6	39
60	Knockout of both miR-15/16 loci induces acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13069-13074.	3.3	39
61	Pluripotent Stem Cell miRNAs and Metastasis in Invasive Breast Cancer. Journal of the National Cancer Institute, 2014, 106, .	3.0	37
62	Prognostic and biological significance of the proangiogenic factor EGFL7 in acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4641-E4647.	3.3	36
63	Micro-RNA Expression and Function in Lymphomas. Advances in Hematology, 2011, 2011, 1-12.	0.6	33
64	A large scale expression study associates uc.283-plus lncRNA with pluripotent stem cells and human glioma. Genome Medicine, 2014, 6, 76.	3.6	32
65	Persistence of Drug-Resistant Leukemic Stem Cells and Impaired NK Cell Immunity in CML Patients Depend on <i>MIR300</i> Antiproliferative and PP2A-Activating Functions. Blood Cancer Discovery, 2020, 1, 48-67.	2.6	30
66	MicroRNA fingerprints in juvenile myelomonocytic leukemia (JMML) identified miR-150-5p as a tumor suppressor and potential target for treatment. Oncotarget, 2016, 7, 55395-55408.	0.8	30
67	Selinexor in combination with decitabine in patients with acute myeloid leukemia: results from a phase 1 study. Leukemia and Lymphoma, 2020, 61, 387-396.	0.6	29
68	Clinical and functional significance of circular RNAs in cytogenetically normal AML. Blood Advances, 2020, 4, 239-251.	2.5	29
69	Prognostic and biologic significance of long non-coding RNA profiling in younger adults with cytogenetically normal acute myeloid leukemia. Haematologica, 2017, 102, 1391-1400.	1.7	28
70	Preclinical activity and a pilot phase I study of pacritinib, an oral JAK2/FLT3 inhibitor, and chemotherapy in FLT3-ITD-positive AML. Investigational New Drugs, 2020, 38, 340-349.	1.2	28
71	ATF3 coordinates serine and nucleotide metabolism to drive cell cycle progression in acute myeloid leukemia. Molecular Cell, 2021, 81, 2752-2764.e6.	4.5	28
72	PRMT5 regulates T cell interferon response and is a target for acute graft-versus-host disease. JCI Insight, 2020, 5, .	2.3	25

#	Article	IF	CITATIONS
73	Synthetic MicroRNA Cassette Dosing: Pharmacokinetics, Tissue Distribution and Bioactivity. Molecular Pharmaceutics, 2012, 9, 1638-1644.	2.3	24
74	MicroRNA-155 Modulates Acute Graft-versus-Host Disease by Impacting T Cell Expansion, Migration, and Effector Function. Journal of Immunology, 2018, 200, 4170-4179.	0.4	24
75	Phase I study of azacitidine and bortezomib in adults with relapsed or refractory acute myeloid leukemia. Leukemia and Lymphoma, 2014, 55, 1304-1308.	0.6	23
76	Preliminary Evidence Of Anti Tumor Activity Of Selinexor (KPT-330) In a Phase I Trial Ofa First-In-Class Oral Selective Inhibitor Of Nuclear Export (SINE) In Patients (pts) With Relapsed / Refractory Non Hodgkin's Lymphoma (NHL) and Chronic Lymphocytic Leukemia (CLL). Blood, 2013, 122, 90-90.	0.6	23
77	Mutations associated with a 17-gene leukemia stem cell score and the score's prognostic relevance in the context of the European LeukemiaNet classification of acute myeloid leukemia. Haematologica, 2020, 105, 721-729.	1.7	21
78	MicroRNAs and Cancer: Introduction. Seminars in Oncology, 2011, 38, 721-723.	0.8	20
79	Protein Kinase C Epsilon Is a Key Regulator of Mitochondrial Redox Homeostasis in Acute Myeloid Leukemia. Clinical Cancer Research, 2018, 24, 608-618.	3.2	20
80	DNA methylation epitypes highlight underlying developmental and disease pathways in acute myeloid leukemia. Genome Research, 2021, 31, 747-761.	2.4	20
81	Gene expression signature predicts relapse in adult patients with cytogenetically normal acute myeloid leukemia. Blood Advances, 2021, 5, 1474-1482.	2.5	20
82	A Novel Ultrasensitive Hybridization-Based ELISA Method for 2-Methoxyphosphorothiolate MicroRNAs and Its In vitro and In vivo Application. AAPS Journal, 2010, 12, 556-568.	2.2	19
83	EGFL7 Antagonizes NOTCH Signaling and Represents a Novel Therapeutic Target in Acute Myeloid Leukemia. Clinical Cancer Research, 2020, 26, 669-678.	3.2	18
84	In Vivo Quantification of Active Decitabine-Triphosphate Metabolite: A Novel Pharmacoanalytical Endpoint for Optimization of Hypomethylating Therapy in Acute Myeloid Leukemia. AAPS Journal, 2013, 15, 242-249.	2.2	16
85	A novel regimen for relapsed/refractory adult acute myeloid leukemia using a <i>KMT2A</i> partial tandem duplication targeted therapy: results of phase 1 study NCI 8485. Haematologica, 2018, 103, 982-987.	1.7	16
86	Discovery and functional implications of a miR-29b-1/miR-29a cluster polymorphism in acute myeloid leukemia. Oncotarget, 2018, 9, 4354-4365.	0.8	16
87	Higher busulfan dose intensity does not improve outcomes of patients undergoing allogeneic haematopoietic cell transplantation following fludarabine, busulfanâ€based reduced toxicity conditioning. Hematological Oncology, 2011, 29, 202-210.	0.8	14
88	Dissection of the Major Hematopoietic Quantitative Trait Locus in Chromosome 6q23.3 Identifies miR-3662 as a Player in Hematopoiesis and Acute Myeloid Leukemia. Cancer Discovery, 2016, 6, 1036-1051.	7.7	14
89	Phase I study of AR-42 and decitabine in acute myeloid leukemia. Leukemia and Lymphoma, 2020, 61, 1484-1492.	0.6	13
90	Selinexor for advanced hematologic malignancies. Leukemia and Lymphoma, 2020, 61, 2335-2350.	0.6	12

#	Article	IF	CITATIONS
91	Atorvastatin for the Prophylaxis of Acute Graft-versus-Host Disease in Patients Undergoing HLA-Matched Related Donor Allogeneic Hematopoietic Stem Cell Transplantation (allo-HCT). Biology of Blood and Marrow Transplantation, 2016, 22, 71-79.	2.0	11
92	Interim Results of a Phase 1b/2 Study of Entospletinib (GS-9973) Monotherapy and in Combination with Chemotherapy in Patients with Acute Myeloid Leukemia. Blood, 2016, 128, 2831-2831.	0.6	11
93	The Use of Molecular Genetics to Refine Prognosis in Acute Myeloid Leukemia. Current Hematologic Malignancy Reports, 2014, 9, 148-157.	1.2	9
94	Toll-Like Receptor Stimulation by MicroRNAs in Acute Graft-vsHost Disease. Frontiers in Immunology, 2018, 9, 2561.	2.2	9
95	Clinical Applications of MicroRNAs in Acute Myeloid Leukemia: A Mini-Review. Frontiers in Oncology, 2021, 11, 679022.	1.3	9
96	Prognostic and Biologic Relevance of Clinically Applicable Long Noncoding RNA Profiling in Older Patients with Cytogenetically Normal Acute Myeloid Leukemia. Molecular Cancer Therapeutics, 2019, 18, 1451-1459.	1.9	7
97	Precision oncology in AML: validation of the prognostic value of the knowledge bank approach and suggestions for improvement. Journal of Hematology and Oncology, 2021, 14, 107.	6.9	6
98	Targeting BRD4 in acute myeloid leukemia with partial tandem duplication of the <i>MLL</i> gene. Haematologica, 2021, 106, 2527-2532.	1.7	5
99	MicroRNAs in the diagnosis, prognosis and treatment of cancer. Oncology Reviews, 2008, 2, 203-213.	0.8	4
100	Clinical and molecular relevance of genetic variants in the non-coding transcriptome of patients with cytogenetically normal acute myeloid leukemia. Haematologica, 2022, 107, 1034-1044.	1.7	4
101	MiRNA-29b Targets MCL-1 and Is Down-Regulated in Chemotherapy-Resistant Acute Myeloid Leukemia (AML) Blood, 2007, 110, 717-717.	0.6	4
102	HOXB-AS3 Regulates Cell Cycle Progression and Interacts with the Drosophila Splicing Human Behavior (DSHB) Complex in NPM1-Mutated Acute Myeloid Leukemia. Blood, 2016, 128, 1514-1514.	0.6	4
103	Targeting Wnt signaling in acute myeloid leukemia stem cells. Haematologica, 2021, , .	1.7	3
104	The Novel BET Inhibitor PLX51107 Has In Vitro and In Vivo Activity Against Acute Myeloid Leukemia. Blood, 2016, 128, 3941-3941.	0.6	3
105	A phase I study of lenalidomide plus chemotherapy with idarubicin and cytarabine in patients with relapsed or refractory acute myeloid leukemia and highâ€risk myelodysplastic syndrome. American Journal of Hematology, 2020, 95, 1457-1465.	2.0	2
106	Clinical Implications of MicroRNAs in AML. , 2015, , 699-705.		2
107	A 17-Gene Leukemia Stem Cell (LSC) Score in Adult Patients (Pts) with Acute Myeloid Leukemia (AML) Reveals a Distinct Mutational Landscape and Refines Current European Leukemianet (ELN) Genetic Risk Stratification. Blood, 2018, 132, 289-289.	0.6	2
108	Clinical and Prognostic Implications of PTPN11 Mutations in Acute Myeloid Leukemia (Alliance). Blood, 2020, 136, 20-21.	0.6	2

#	Article	IF	CITATIONS
109	Decitabine Priming Enhances The Antileukemic Effects Of The Selective Inhibitor Of Nuclear Export (SINE) CRM1/XPO1 Antagonist (Selinexor) In Acute Myeloid Leukemia (AML). Blood, 2013, 122, 1453-1453.	0.6	2
110	Potential Targeting Ph+ Acute Lymphoblastic Leukemia Stem and Progenitor Cells By Modulating the CIP2A-SET-SETBP1 -Mediated Suppression of PP2A Activity. Blood, 2016, 128, 2909-2909.	0.6	2
111	Long noncoding RNAs to predict survival in acute myeloid leukemia: a step toward personalized medicine?. Biomarkers in Medicine, 2016, 10, 935-938.	0.6	1
112	Serum Mir-29a Is Up-Regulated In Acute Graft Versus Host Disease (aGVHD) After Allogeneic Hematopoietic Stem Cell Transplantation (allo HSCT) and Activates Dendritic Cells (DCs). Blood, 2013, 122, 4471-4471.	0.6	1
113	Evidence of MicroRNA-29b and Sp1/NFκB-HDAC Regulatory Network for KIT Expression in KIT-Driven Acute Myeloid Leukemia (AML): Biologic and Therapeutic Implications Blood, 2009, 114, 938-938.	0.6	1
114	Effect of High Intensity Chemotherapy Vs Targeted Therapy on Survival in AML Patients Aged 60-75. Blood, 2021, 138, 4125-4125.	0.6	1
115	Acute bulbar muscle dysfunction in hyperthyroidism. Connecticut Medicine, 2002, 66, 3-6.	0.2	1
116	High throughput microRNAs profiling in cancers. , 2007, , 309-321.		0
117	Implications of MicroRNAs in Normal Hematopoiesis and Human Leukemia. Clinical Leukemia, 2008, 2, 96-101.	0.2	0
118	MiR-155 Impacts T Cell Migration in Acute Graft-Versus-Host-Disease (aGVHD). Biology of Blood and Marrow Transplantation, 2016, 22, S58-S59.	2.0	0
119	Methods Used to Make Lipid Nanoparticles to Deliver LNA Gapmers Against IncRNAs into Acute Myeloid Leukemia (AML) Blasts. Methods in Molecular Biology, 2021, 2348, 167-174.	0.4	0
120	MicroRNA Profiling of Megakaryocytes. Methods in Molecular Biology, 2009, 496, 293-298.	0.4	0
121	Regulation of Acute Graft-Versus-Host Disease by MicroRNA-155. Blood, 2010, 116, 245-245.	0.6	0
122	Phase I Study of the Combination of Azacitidine (AZA) with MEC (Mitoxantrone, Etoposide and) Tj ETQq0 0 0 rgB1 Blood, 2012, 120, 3616-3616.	[Overloc 0.6	k 10 Tf 50 2 0
123	A Novel Therapeutic Approach In Acute Myeloid Leukemia (AML): In Vivo Preclinical Pharmacokinetic (PK), Pharmacodynamic (PD) and Antileukemia Activities Of Synthetic 2'-O-Methylphosphorothioate Mir-29b. Blood, 2013, 122, 3933-3933.	0.6	0
124	Phase I Study Of The Combination Of Midostaurin, Bortezomib and Chemotherapy In Relapsed/Refractory Acute Myeloid Leukemia (AML): Targeting Aberrant Tyrosine Kinase Activity. Blood, 2013, 122, 3966-3966.	0.6	0
125	EGFL7 Antagonizes NOTCH Signaling, Stimulates Blast Proliferation and Confers Poor Prognosis in Cytogenetically-Normal Acute Myeloid Leukemia (CN-AML). Blood, 2016, 128, 2689-2689.	0.6	0
126	Prognostic and Biologic Significance of Long Non-Coding RNA (IncRNA) Profiling in Cytogenetically Abnormal Acute Myeloid Leukemia (CA-AML). Blood, 2018, 132, 2767-2767.	0.6	0

#	Article	IF	CITATIONS
127	Serum MicroRNA-155 in Acute Graft-Versus-Host-Disease (aGVHD). , 2019, 2, 079-082.		Ο
128	Epidermal Growth Factor-like 7 As a Novel Therapeutic Target in Mantle Cell Lymphoma. Blood, 2021, 138, 3300-3300.	0.6	0