Evan Uchaker

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/11964068/publications.pdf
Version: 2024-02-01

$1 \quad$ Nanomaterials for energy conversion and storage. Chemical Society Reviews, 2013, 42, 3127.38.11,3562 Hydrogenated $\mathrm{Li}<\mathrm{sub}>4</ \mathrm{sub}\rangle \mathrm{Ti}<\mathrm{sub}\rangle 5</ \mathrm{sub}>\mathrm{O}\langle\mathrm{sub}>12</$ sub> Nanowire Arrays for High Rate LithiumIon Batteries. Advanced Materials, 2012, 24, 6502-6506.3 Matrix as a Superior Anode Material for High Rate Lithium lon Batteries. Advanced Energy Materials,19.5

$$
2012,2,691-698
$$

Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Science China Materials,

Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond.

Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor
12 and improved catalytic activity for oxygen reduction reaction. Journal of Power Sources, 2016, 314, 39-48.

19
20
21
22

Three dimensional architecture of carbon wrapped multilayer
$20 \quad \begin{aligned} & \mathrm{Na} \text { <sub> } 3<\mid \text { sub }>V<\text { sub }>2</ \text { sub }>\mathrm{O}<\text { sub }>2<\mid \text { sub }>(\mathrm{PO}<\text { sub }>4<\mid \text { sub }\rangle)<\text { sub }>2</ \text { sub }>F \text { nanocubes embedded in } \\ & \text { graphene for improved sodium ion batteries. Journal of Materials Chemistry } A, 2015,3,17563-17568 \text {. }\end{aligned}$
10.3

91
Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability. Journal
of Materials Chemistry A, 2014, 2, 8472.
10.3

91

Hierarchically Structured ZnO Nanorodsấ"Nanosheets for Improved Quantum-Dot-Sensitized Solar
Cells. ACS Applied Materials \& Interfaces, 2014, 6, 4466-4472.
$8.0 \quad 85$

Three-Dimensional Coherent Titaniaâ€"Mesoporous Carbon Nanocomposite and Its Lithium-Ion Storage
Properties. ACS Applied Materials \& Interfaces, 2012, 4, 2985-2992.
$8.0 \quad 84$

23
Nickel-mediated polyol synthesis of hierarchical V <sub >2 </sub $\rangle \mathrm{O}$ _{5$} hollow microspheres
with enhanced lithium storage properties. Journal of Materials Chemistry A, 2015, 3, 1979-1985.
$10.3 \quad 82$

24 Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 6770.
$10.3 \quad 74$

$$
\begin{aligned}
& 25 \quad \begin{array}{l}
\text { Influence of deposition strategies on CdSe quantum dot-sensitized solar cells: a comparison between } \\
\text { successive ionic layer adsorption and reaction and chemical bath deposition. Journal of Materials } \\
\text { Chemistry A, 2015, 3, 12539-12549. }
\end{array} \\
& 26 \quad \begin{array}{l}
\text { The Role of Intentionally Introduced Defects on Electrode Materials for Alkaliấłon Batteries. } \\
\text { Chemistry - an Asian Journal, 2015, 10, 1608-1617. }
\end{array}
\end{aligned}
$$

3.3

69

> Porous carbon with high capacitance and graphitization through controlled addition and removal of
> sulfur-containing compounds. Nano Energy, 2015, 12, 567-577.

Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries.
Journal of Materials Chemistry, 2012, 22, 24439.
28 Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries.
Journal of Materials Chemistry, 2012, 22, 24439 .
6.7

63

> Facile and Green Preparation for the Formation of MoO₂-GO Composites as Anode
> Material for Lithium-lon Batteries. Journal of Physical Chemistry C, 2014, 118, 24890-24897.
$3.1 \quad 58$

Homogenous incorporation of SnO 2 nanoparticles in carbon cryogels via the thermal decomposition
30 of stannous sulfate and their enhanced lithium-ion intercalation properties. Nano Energy, 2013, 2,
$16.0 \quad 54$
769-778.
Enhanced Intercalation Dynamics and Stability of Engineered Micro/Nanoâ€Structured Electrode
31 Materials: Vanadium Oxide Mesocrystals. Small, 2013, 9, 3880-3886. Materials: Vanadium Oxide Mesocrystals. Small, 2013, 9, 3880-3886.
10.0

50

Photoanodes with mesoporous TiO2 beads and nanoparticles for enhanced performance of CdS/CdSe quantum dot co-sensitized solar cells. Electrochimica Acta, 2014, 135, 284-292.
5.2

42

Additive-free solvothermal synthesis of hierarchical flower-like LiFePO4/C mesocrystal and its
33 Additive-free solvothermal syntrochemical performance. RSC Advances, 2013, 3, 19366.

Porous nanostructured V2O5 film electrode with excellent Li-ion intercalation properties.
Electrochemistry Communications, 2011, 13, 1276-1279.
4.7

40

37	One-pot synthesis of <i>in-situ</i> carbon-coated Fe₃O₄ as a long-life lithium-ion battery anode. Nanotechnology, 2017, 28, 155603.	2.6	32
38	Nanoporous carbon leading to the high performance of a Na <sub> $3<\mid$ sub $>\mathrm{V}$ ₂ O ₂(PO<sub>4<\|sub>)₂F@carbon/graphene cathode in a sodium ion battery. CrystEngComm, 2017, 19, 4287-4293.	2.6	31
39	Elucidating the Role of Defects for Electrochemical Intercalation in Sodium Vanadium Oxide. Chemistry of Materials, 2015, 27, 7082-7090.	6.7	28
40	Synthesis and characterization of high power LiFePO4/C nano-plate thin films. Journal of Power Sources, 2012, 213, 100-105.	7.8	27
41	Laser-induced surface acoustic waves: An alternative method to nanoindentation for the mechanical characterization of porous nanostructured thin film electrode media. Mechanics of Materials, 2015, 91, 333-342.	3.2	26
42	Mesoporous Carbon Nanofibers Embedded with MoS<sub>2<\|sub> Nanocrystals for Extraordinary Liâ€łon Storage. Chemistry - A European Journal, 2015, 21, 18248-18257.	3.3	25
43	Comparison of surface and bulk nitrogen modification in highly porous carbon for enhanced supercapacitors. Science China Materials, 2015, 58, 521-533.	6.3	25
44	Mesoporous Carbon: Li4Ti5O12 Nanoparticles Embedded in a Mesoporous Carbon Matrix as a Superior Anode Material for High Rate Lithium Ion Batteries (Adv. Energy Mater. 6/2012). Advanced Energy Materials, 2012, 2, 699-699.	19.5	5
45	Microstructurally Composed Nanoparticle Assemblies as Electroactive Materials for Lithium-Ion Battery Electrodes. Green Energy and Technology, 2015, , 353-391.	0.6	1

REVITALIZED INTEREST IN VANADIUM PENTOXIDE AS CATHODE MATERIAL FOR ALKALI-ION BATTERIES. , 2018, , 453-580.

