Evan Uchaker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11964068/publications.pdf Version: 2024-02-01

EVAN LICHARED

#	Article	IF	CITATIONS
1	Nanomaterials for energy conversion and storage. Chemical Society Reviews, 2013, 42, 3127.	38.1	1,356
2	Hydrogenated Li ₄ Ti ₅ O ₁₂ Nanowire Arrays for High Rate Lithium Ion Batteries. Advanced Materials, 2012, 24, 6502-6506.	21.0	451
3	Li ₄ Ti ₅ O ₁₂ Nanoparticles Embedded in a Mesoporous Carbon Matrix as a Superior Anode Material for High Rate Lithium Ion Batteries. Advanced Energy Materials, 2012, 2, 691-698.	19.5	321
4	Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Science China Materials, 2015, 58, 715-766.	6.3	241
5	Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 7862.	10.3	226
6	Revitalized interest in vanadium pentoxide as cathode material for lithium-ion batteries and beyond. Energy Storage Materials, 2018, 11, 205-259.	18.0	221
7	Leafâ€Like V ₂ O ₅ Nanosheets Fabricated by a Facile Green Approach as High Energy Cathode Material for Lithiumâ€lon Batteries. Advanced Energy Materials, 2013, 3, 1171-1175.	19.5	200
8	General Strategy for Designing Core–Shell Nanostructured Materials for High-Power Lithium Ion Batteries. Nano Letters, 2012, 12, 5673-5678.	9.1	193
9	Sn-Doped V ₂ O ₅ Film with Enhanced Lithium-Ion Storage Performance. Journal of Physical Chemistry C, 2013, 117, 23507-23514.	3.1	170
10	CoO–carbon nanofiber networks prepared by electrospinning as binder-free anode materials for lithium-ion batteries with enhanced properties. Nanoscale, 2013, 5, 12342.	5.6	149
11	Comparison of amorphous, pseudohexagonal and orthorhombic Nb ₂ O ₅ for high-rate lithium ion insertion. CrystEngComm, 2016, 18, 2532-2540.	2.6	146
12	Phosphorus/sulfur Co-doped porous carbon with enhanced specific capacitance for supercapacitor and improved catalytic activity for oxygen reduction reaction. Journal of Power Sources, 2016, 314, 39-48.	7.8	141
13	TiNb ₂ O ₇ /graphene composites as high-rate anode materials for lithium/sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 4242-4251.	10.3	134
14	Polyol-Mediated Solvothermal Synthesis and Electrochemical Performance of Nanostructured V ₂ O ₅ Hollow Microspheres. Journal of Physical Chemistry C, 2013, 117, 1621-1626.	3.1	121
15	Mesocrystals as electrode materials for lithium-ion batteries. Nano Today, 2014, 9, 499-524.	11.9	120
16	Architectured ZnO photoelectrode for high efficiency quantum dot sensitized solar cells. Energy and Environmental Science, 2013, 6, 3542.	30.8	116
17	Titanium alkoxide induced BiOBr–Bi2WO6 mesoporous nanosheet composites with much enhanced photocatalytic activity. Journal of Materials Chemistry A, 2013, 1, 7949.	10.3	113
18	Mesoporous TiO2 beads for high efficiency CdS/CdSe quantum dot co-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 2517.	10.3	102

Evan Uchaker

#	Article	IF	CITATIONS
19	Sulfur-rich carbon cryogels for supercapacitors with improved conductivity and wettability. Journal of Materials Chemistry A, 2014, 2, 8472.	10.3	91
20	Three dimensional architecture of carbon wrapped multilayer Na ₃ V ₂ O ₂ (PO ₄) ₂ F nanocubes embedded in graphene for improved sodium ion batteries. Journal of Materials Chemistry A, 2015, 3, 17563-17568.	10.3	91
21	Hierarchically Structured ZnO Nanorods–Nanosheets for Improved Quantum-Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 4466-4472.	8.0	85
22	Three-Dimensional Coherent Titania–Mesoporous Carbon Nanocomposite and Its Lithium-Ion Storage Properties. ACS Applied Materials & Interfaces, 2012, 4, 2985-2992.	8.0	84
23	Nickel-mediated polyol synthesis of hierarchical V ₂ O ₅ hollow microspheres with enhanced lithium storage properties. Journal of Materials Chemistry A, 2015, 3, 1979-1985.	10.3	82
24	Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 6770.	10.3	74
25	Influence of deposition strategies on CdSe quantum dot-sensitized solar cells: a comparison between successive ionic layer adsorption and reaction and chemical bath deposition. Journal of Materials Chemistry A, 2015, 3, 12539-12549.	10.3	73
26	The Role of Intentionally Introduced Defects on Electrode Materials for Alkaliâ€ion Batteries. Chemistry - an Asian Journal, 2015, 10, 1608-1617.	3.3	69
27	Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energy, 2015, 12, 567-577.	16.0	67
28	Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 24439.	6.7	63
29	Facile and Green Preparation for the Formation of MoO ₂ -GO Composites as Anode Material for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 24890-24897.	3.1	58
30	Homogenous incorporation of SnO2 nanoparticles in carbon cryogels via the thermal decomposition of stannous sulfate and their enhanced lithium-ion intercalation properties. Nano Energy, 2013, 2, 769-778.	16.0	54
31	Enhanced Intercalation Dynamics and Stability of Engineered Micro/Nanoâ€ S tructured Electrode Materials: Vanadium Oxide Mesocrystals. Small, 2013, 9, 3880-3886.	10.0	50
32	Photoanodes with mesoporous TiO2 beads and nanoparticles for enhanced performance of CdS/CdSe quantum dot co-sensitized solar cells. Electrochimica Acta, 2014, 135, 284-292.	5.2	42
33	Additive-free solvothermal synthesis of hierarchical flower-like LiFePO4/C mesocrystal and its electrochemical performance. RSC Advances, 2013, 3, 19366.	3.6	41
34	Porous nanostructured V2O5 film electrode with excellent Li-ion intercalation properties. Electrochemistry Communications, 2011, 13, 1276-1279.	4.7	40
35	Additive-free solvothermal synthesis and Li-ion intercalation properties ofÂdumbbell-shaped LiFePO4/C mesocrystals. Journal of Power Sources, 2013, 239, 103-110.	7.8	36
36	Mesoporous Tungsten Trioxide Polyaniline Nanocomposite as an Anode Material for Highâ€Performance Lithiumâ€Ion Batteries. ChemNanoMat, 2016, 2, 281-289.	2.8	32

Evan Uchaker

#	Article	IF	CITATIONS
37	One-pot synthesis of <i>in-situ</i> carbon-coated Fe ₃ O ₄ as a long-life lithium-ion battery anode. Nanotechnology, 2017, 28, 155603.	2.6	32
38	Nanoporous carbon leading to the high performance of a Na ₃ V ₂ O ₂ (PO ₄) ₂ F@carbon/graphene cathode in a sodium ion battery. CrystEngComm, 2017, 19, 4287-4293.	2.6	31
39	Elucidating the Role of Defects for Electrochemical Intercalation in Sodium Vanadium Oxide. Chemistry of Materials, 2015, 27, 7082-7090.	6.7	28
40	Synthesis and characterization of high power LiFePO4/C nano-plate thin films. Journal of Power Sources, 2012, 213, 100-105.	7.8	27
41	Laser-induced surface acoustic waves: An alternative method to nanoindentation for the mechanical characterization of porous nanostructured thin film electrode media. Mechanics of Materials, 2015, 91, 333-342.	3.2	26
42	Mesoporous Carbon Nanofibers Embedded with MoS ₂ Nanocrystals for Extraordinary Li″on Storage. Chemistry - A European Journal, 2015, 21, 18248-18257.	3.3	25
43	Comparison of surface and bulk nitrogen modification in highly porous carbon for enhanced supercapacitors. Science China Materials, 2015, 58, 521-533.	6.3	25
44	Mesoporous Carbon: Li4Ti5O12 Nanoparticles Embedded in a Mesoporous Carbon Matrix as a Superior Anode Material for High Rate Lithium Ion Batteries (Adv. Energy Mater. 6/2012). Advanced Energy Materials, 2012, 2, 699-699.	19.5	5
45	Microstructurally Composed Nanoparticle Assemblies as Electroactive Materials for Lithium-Ion Battery Electrodes. Green Energy and Technology, 2015, , 353-391.	0.6	1
46	REVITALIZED INTEREST IN VANADIUM PENTOXIDE AS CATHODE MATERIAL FOR ALKALI-ION BATTERIES. , 2018, , 453-580.		0
47	BEYOND LI ION: ELECTRODE MATERIALS FOR SODIUMAND MAGNESIUM-ION BATTERIES. , 2018, , 639-755.		0