
Ivan Luptak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1196387/publications.pdf Version: 2024-02-01

ΙνανιΓιιστακ

#	Article	IF	CITATIONS
1	Novel Small-Molecule Troponin Activator Increases Cardiac Contractile Function Without Negative Impact on Energetics. Circulation: Heart Failure, 2022, 15, .	1.6	17
2	lvabradine in the management of COVID-19-related cardiovascular complications: A perspective. Current Pharmaceutical Design, 2022, 28, .	0.9	1
3	Effects of Sodiumâ€Glucose Linked Transporter 2 Inhibition With Ertugliflozin on Mitochondrial Function, Energetics, and Metabolic Gene Expression in the Presence and Absence of Diabetes Mellitus in Mice. Journal of the American Heart Association, 2021, 10, e019995.	1.6	39
4	Redox-Resistant SERCA [Sarco(endo)plasmic Reticulum Calcium ATPase] Attenuates Oxidant-Stimulated Mitochondrial Calcium and Apoptosis in Cardiac Myocytes and Pressure Overload–Induced Myocardial Failure in Mice. Circulation, 2020, 142, 2459-2469.	1.6	19
5	Differential Effects of Sacubitril/Valsartan on Diastolic Function in Mice With Obesity-Related Metabolic Heart Disease. JACC Basic To Translational Science, 2020, 5, 916-927.	1.9	17
6	A novel tracer for in vivo optical imaging of fatty acid metabolism in the heart and brown adipose tissue. Scientific Reports, 2020, 10, 11209.	1.6	2
7	Role of Glutaredoxin-1 and Glutathionylation in Cardiovascular Diseases. International Journal of Molecular Sciences, 2020, 21, 6803.	1.8	23
8	Increasing mitochondrial ATP synthesis with butyrate normalizes ADP and contractile function in metabolic heart disease. NMR in Biomedicine, 2020, 33, e4258.	1.6	9
9	Genetically targeted fluorescent probes reveal dynamic calcium responses to adrenergic signaling in multiple cardiomyocyte compartments. International Journal of Biochemistry and Cell Biology, 2019, 114, 105569.	1.2	1
10	Production of adeno-associated virus vectors for in vitro and in vivo applications. Scientific Reports, 2019, 9, 13601.	1.6	86
11	Use of Ventilatory Efficiency Slope as a Marker for Increased Mortality in Wild-Type Transthyretin Cardiac Amyloidosis. American Journal of Cardiology, 2019, 124, 122-130.	0.7	14
12	Energetic Dysfunction Is Mediated by Mitochondrial Reactive Oxygen Species and Precedes Structural Remodeling in Metabolic Heart Disease. Antioxidants and Redox Signaling, 2019, 31, 539-549.	2.5	20
13	Myocardial Redox Hormesis Protects the Heart of Female Mice in Sepsis. Shock, 2019, 52, 52-60.	1.0	11
14	Decreased ATP production and myocardial contractile reserve in metabolic heart disease. Journal of Molecular and Cellular Cardiology, 2018, 116, 106-114.	0.9	70
15	Multiplexed Optical Imaging of Energy Substrates Reveals That Left Ventricular Hypertrophy Is Associated With Brown Adipose Tissue Activation. Circulation: Cardiovascular Imaging, 2018, 11, e007007.	1.3	5
16	Glucose transporter 4-deficient hearts develop maladaptive hypertrophy in response to physiological or pathological stresses. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H1098-H1108.	1.5	39
17	Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Dietâ€Induced Metabolic Heart Disease. Journal of the American Heart Association, 2016, 5, .	1.6	85
18	Partial Liver Kinase B1 (LKB1) Deficiency Promotes Diastolic Dysfunction, De Novo Systolic Dysfunction, Apoptosis, and Mitochondrial Dysfunction With Dietary Metabolic Challenge. Journal of the American Heart Association, 2016, 5, .	1.6	5

Ivan Luptak

#	Article	IF	CITATIONS
19	Mitochondrial remodeling in mice with cardiomyocyte-specific lipid overload. Journal of Molecular and Cellular Cardiology, 2015, 79, 275-283.	0.9	52
20	High fat, high sucrose diet causes cardiac mitochondrial dysfunction due in part to oxidative post-translational modification of mitochondrial complex II. Journal of Molecular and Cellular Cardiology, 2015, 78, 165-173.	0.9	68
21	Hydrogen Peroxide–Mediated SERCA Cysteine 674 Oxidation Contributes to Impaired Cardiac Myocyte Relaxation in Senescent Mouse Heart. Journal of the American Heart Association, 2013, 2, e000184.	1.6	91
22	Effects of Direct Renin Inhibition on Myocardial Fibrosis and Cardiac Fibroblast Function. PLoS ONE, 2013, 8, e81612.	1.1	31
23	The Polyphenols Resveratrol and S17834 Prevent the Structural and Functional Sequelae of Diet-Induced Metabolic Heart Disease in Mice. Circulation, 2012, 125, 1757-1764.	1.6	103
24	Both selenium deficiency and modest selenium supplementation lead to myocardial fibrosis in mice via effects on redoxâ€methylation balance. Molecular Nutrition and Food Research, 2012, 56, 1812-1824.	1.5	59
25	Genetic loss of insulin receptors worsens cardiac efficiency in diabetes. Journal of Molecular and Cellular Cardiology, 2012, 52, 1019-1026.	0.9	56
26	Mitofusin-2 Maintains Mitochondrial Structure and Contributes to Stress-Induced Permeability Transition in Cardiac Myocytes. Molecular and Cellular Biology, 2011, 31, 1309-1328.	1.1	306
27	Mitochondrial Transporter ATP Binding Cassette Mitochondrial Erythroid Is a Novel Gene Required for Cardiac Recovery After Ischemia/Reperfusion. Circulation, 2011, 124, 806-813.	1.6	61
28	Effects of Insulin Replacements, Inhibitors of Angiotensin, and PKCÂ's Actions to Normalize Cardiac Gene Expression and Fuel Metabolism in Diabetic Rats. Diabetes, 2007, 56, 1410-1420.	0.3	49
29	Long-Term Effects of Increased Glucose Entry on Mouse Hearts During Normal Aging and Ischemic Stress. Circulation, 2007, 116, 901-909.	1.6	112
30	Aberrant activation of AMP-activated protein kinase remodels metabolic network in favor of cardiac glycogen storage. Journal of Clinical Investigation, 2007, 117, 1432-1439.	3.9	95
31	Effects of chronic Akt activation on glucose uptake in the heart. American Journal of Physiology - Endocrinology and Metabolism, 2006, 290, E789-E797.	1.8	49
32	Protein remodeling of the heart ventricles in hereditary hypertriglyceridemic rat: effect of ace-inhibition. Journal of Biomedical Science, 2005, 12, 103-111.	2.6	13
33	Decreased Contractile and Metabolic Reserve in Peroxisome Proliferator–Activated Receptor-α–Null Hearts Can Be Rescued by Increasing Glucose Transport and Utilization. Circulation, 2005, 112, 2339-2346.	1.6	148
34	Effect of simvastatin on remodeling of the left ventricle and aorta in L-NAME-induced hypertension. Life Sciences, 2004, 74, 1211-1224.	2.0	47
35	Glucose Metabolism and Energy Homeostasis in Mouse Hearts Overexpressing Dominant Negative α2 Subunit of AMP-activated Protein Kinase. Journal of Biological Chemistry, 2003, 278, 28372-28377.	1.6	197
36	Cardiac-Specific Overexpression of GLUT1 Prevents the Development of Heart Failure Attributable to Pressure Overload in Mice. Circulation, 2002, 106, 2125-2131.	1.6	282