Jacob M Berlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1196384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improved Synthesis of Graphene Oxide. ACS Nano, 2010, 4, 4806-4814.	7.3	10,035
2	Highly Efficient Ruthenium Catalysts for the Formation of Tetrasubstituted Olefins via Ring-Closing Metathesis. Organic Letters, 2007, 9, 1589-1592.	2.4	286
3	Highly Active Chiral Ruthenium Catalysts for Asymmetric Ring-Closing Olefin Metathesis. Journal of the American Chemical Society, 2006, 128, 1840-1846.	6.6	237
4	Ruthenium-Catalyzed Ring-Closing Metathesis to Form Tetrasubstituted Olefins. Organic Letters, 2007, 9, 1339-1342.	2.4	158
5	Highly Active Chiral Ruthenium Catalysts for Asymmetric Cross- and Ring-Opening Cross-Metathesis. Angewandte Chemie - International Edition, 2006, 45, 7591-7595.	7.2	143
6	Neural Stem Cell-Mediated Intratumoral Delivery of Gold Nanorods Improves Photothermal Therapy. ACS Nano, 2014, 8, 12450-12460.	7.3	139
7	Antioxidant Carbon Particles Improve Cerebrovascular Dysfunction Following Traumatic Brain Injury. ACS Nano, 2012, 6, 8007-8014.	7.3	108
8	Challenges in realizing selectivity for nanoparticle biodistribution and clearance: lessons from gold nanoparticles. Therapeutic Delivery, 2017, 8, 763-774.	1.2	105
9	Academic cross-fertilization by public screening yields a remarkable class of protein phosphatase methylesterase-1 inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6811-6816.	3.3	93
10	Effective Drug Delivery, <i>In Vitro</i> and <i>In Vivo</i> , by Carbon-Based Nanovectors Noncovalently Loaded with Unmodified Paclitaxel. ACS Nano, 2010, 4, 4621-4636.	7.3	85
11	Biocompatibility of pristine graphene for neuronal interface. Journal of Neurosurgery: Pediatrics, 2013, 11, 575-583.	0.8	79
12	Gold Nanoparticle‣oaded Neural Stem Cells for Photothermal Ablation of Cancer. Advanced Healthcare Materials, 2013, 2, 976-982.	3.9	59
13	Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema. ELife, 2015, 4, e09623.	2.8	59
14	Neural stem cells improve intracranial nanoparticle retention and tumor-selective distribution. Future Oncology, 2014, 10, 401-415.	1.1	51
15	Conjugation of pH-responsive nanoparticles to neural stem cells improves intratumoral therapy. Journal of Controlled Release, 2014, 191, 82-89.	4.8	51
16	Competitive Activity-Based Protein Profiling Identifies Aza-β-Lactams as a Versatile Chemotype for Serine Hydrolase Inhibition. Journal of the American Chemical Society, 2012, 134, 5068-5071.	6.6	49
17	Effect of PLGA block molecular weight on gelling temperature of PLGAâ€PEGâ€PLGA thermoresponsive copolymers. Journal of Polymer Science Part A, 2019, 57, 35-39.	2.5	46
18	Noncovalent Functionalization of Carbon Nanovectors with an Antibody Enables Targeted Drug Delivery. ACS Nano, 2011, 5, 6643-6650.	7.3	45

JACOB M BERLIN

#	Article	IF	CITATIONS
19	Controlled Assembly of Biocompatible Metallic Nanoaggregates Using a Small Molecule Crosslinker. Advanced Materials, 2015, 27, 5158-5164.	11.1	45
20	The future of CpG immunotherapy in cancer. Immunotherapy, 2013, 5, 1-3.	1.0	41
21	Gold nanorod-mediated near-infrared laser ablation: <i>in vivo</i> experiments on mice and theoretical analysis at different settings. International Journal of Hyperthermia, 2017, 33, 150-159.	1.1	41
22	Focusing light inside scattering media with magnetic-particle-guided wavefront shaping. Optica, 2017, 4, 1337.	4.8	40
23	Metronomic Doses of Temozolomide Enhance the Efficacy of Carbon Nanotube CpG Immunotherapy in an Invasive Glioma Model. PLoS ONE, 2016, 11, e0148139.	1.1	38
24	Design of Poly(ethylene Glycol)-Functionalized Hydrophilic Carbon Clusters for Targeted Therapy of Cerebrovascular Dysfunction in Mild Traumatic Brain Injury. Journal of Neurotrauma, 2013, 30, 789-796.	1.7	37
25	Intraperitoneal Administration of Neural Stem Cell–Nanoparticle Conjugates Targets Chemotherapy to Ovarian Tumors. Bioconjugate Chemistry, 2017, 28, 1767-1776.	1.8	34
26	Carbonâ^'Carbon Bond Formation on Reaction of a Copper(I) Stannyl Complex with Carbon Dioxide. Organometallics, 2008, 27, 2682-2684.	1.1	33
27	Coating Metal Nanoparticle Surfaces with Small Organic Molecules Can Reduce Nonspecific Cell Uptake. ACS Nano, 2018, 12, 117-127.	7.3	32
28	Functionalized iron oxide nanoparticles for controlling the movement of immune cells. Nanoscale, 2015, 7, 7780-7789.	2.8	27
29	Specific targeting of ovarian tumor-associated macrophages by large, anionic nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 19737-19745.	3.3	27
30	Noncovalent Assembly of Targeted Carbon Nanovectors Enables Synergistic Drug and Radiation Cancer Therapy <i>in Vivo</i> . ACS Nano, 2012, 6, 2497-2505.	7.3	26
31	Exploiting homing abilities of cell carriers: Targeted delivery of nanoparticles for cancer therapy. Biochemical Pharmacology, 2017, 145, 18-26.	2.0	25
32	Antibody-Targeted Nanovectors for the Treatment of Brain Cancers. ACS Nano, 2012, 6, 3114-3120.	7.3	24
33	Self-Assembled Plasmonic Metamolecules Exhibiting Tunable Magnetic Response at Optical Frequencies. Journal of Physical Chemistry C, 2017, 121, 15915-15921.	1.5	20
34	Immunostimulatory CpG on Carbon Nanotubes Selectively Inhibits Migration of Brain Tumor Cells. Bioconjugate Chemistry, 2018, 29, 1659-1668.	1.8	19
35	Matrix metalloproteinase-triggered denuding of engineered gold nanoparticles for selective cell uptake. Journal of Materials Chemistry B, 2013, 1, 2341.	2.9	16
36	A Systematic comparison of in vitro cell uptake and in vivo biodistribution for three classes of gold nanoparticles with saturated PEC coatings. PLoS ONE, 2020, 15, e0234916.	1.1	16

JACOB M BERLIN

#	Article	IF	CITATIONS
37	Thermal analysis of laser irradiation-gold nanorod combinations at 808 nm, 940 nm, 975 nm and 10 wavelengths in breast cancer model. International Journal of Hyperthermia, 2021, 38, 1099-1110.	064ậ€‰n 1.1	m ₁₄
38	Large, Anionic Liposomes Enable Targeted Intraperitoneal Delivery of a TLR 7/8 Agonist To Repolarize Ovarian Tumors' Microenvironment. Bioconjugate Chemistry, 2021, 32, 1581-1592.	1.8	11
39	Silica Coated Paclitaxel Nanocrystals Enable Neural Stem Cell Loading For Treatment of Ovarian Cancer. Bioconjugate Chemistry, 2019, 30, 1415-1424.	1.8	10
40	Colorimetric Detection of <i>Staphylococcus aureus</i> Contaminated Solutions without Purification. Bioconjugate Chemistry, 2017, 28, 183-193.	1.8	9
41	Dynamically Programmable Magnetic Fields for Controlled Movement of Cells Loaded with Iron Oxide Nanoparticles. ACS Applied Bio Materials, 2020, 3, 4139-4147.	2.3	5
42	Impact of Cross-Linker Valency on Gold Nanoparticle Aggregate Formation and Cellular Uptake. Langmuir, 2017, 33, 14358-14365.	1.6	5
43	Surgery-Guided Removal of Ovarian Cancer Using Up-Converting Nanoparticles. ACS Applied Materials & Interfaces, 2020, 12, 48371-48379.	4.0	4
44	Gold Nanoparticles: Controlled Assembly of Biocompatible Metallic Nanoaggregates Using a Small Molecule Crosslinker (Adv. Mater. 35/2015). Advanced Materials, 2015, 27, 5251-5251.	11.1	1
45	Use of a bioengineered antioxidant in mouse models of metabolic syndrome. Expert Opinion on Investigational Drugs, 2020, 29, 209-219.	1.9	1
46	Cancer Therapy: Gold Nanoparticle‣oaded Neural Stem Cells for Photothermal Ablation of Cancer (Adv. Healthcare Mater. 7/2013). Advanced Healthcare Materials, 2013, 2, 922-922.	3.9	0
47	Colloidal Capsules Assembled from Gold Nanoparticles Using Small-Molecule Hydrophobic Cross-linkers. Langmuir, 2019, 35, 17037-17045.	1.6	0