
Rafael Lopes Quirino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1196364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of the heating rate on the thermodegradation during the mild pyrolysis of the wood. Wood Material Science and Engineering, 2023, 18, 412-421.	2.3	2
2	Behavior of wood during the thermal transition between torrefaction and pyrolysis: chemical and physical modifications Wood Material Science and Engineering, 2023, 18, 244-253.	2.3	1
3	Non-isocyanate poly(acyl-urethane) obtained from urea and castor (Ricinus communis L.) oil. Progress in Organic Coatings, 2022, 162, 106557.	3.9	9
4	Thermodegradation characterization of hardwoods and softwoods in torrefaction and transition zone between torrefaction and pyrolysis. Fuel, 2022, 310, 122281.	6.4	25
5	Efficient transformation of renewable vanillin into reprocessable, acid-degradable and flame retardant polyimide vitrimers. Journal of Cleaner Production, 2022, 333, 130043.	9.3	31
6	Biodegradation Study of Polyurethanes from Linseed and Passion Fruit Oils. Coatings, 2022, 12, 617.	2.6	1
7	Thermosetting polymers from renewable sources. Polymer International, 2021, 70, 167-180.	3.1	38
8	UV absorption, anticorrosion, and long-term antibacterial performance of vegetable oil based cationic waterborne polyurethanes enabled by amino acids. Chemical Engineering Journal, 2021, 421, 127774.	12.7	50
9	Ablation of cells in mice using antibody-functionalized multiwalled carbon nanotubes (Ab-MWCNTs) in combination with microwaves. Nanotechnology, 2021, 32, 195102.	2.6	9
10	Fabrication and Characterization of Non-Equilibrium Plasma-Treated PVDF Nanofiber Membrane-Based Sensors. Sensors, 2021, 21, 4179.	3.8	6
11	Data-Driven Approach to Decipher the Role of Triglyceride Composition on the Thermomechanical Properties of Thermosetting Polymers Using Vegetable and Microbial Oils. ACS Applied Polymer Materials, 2021, 3, 4485-4494.	4.4	4
12	Aquaculture Waste: Potential Synthesis of Polyhydroxyalkanoates. ACS Omega, 2021, 6, 2434-2442.	3.5	6
13	Vegetable Oil-Based Polymeric Materials: Synthesis, Properties, and Applications. , 2020, , 295-302.		2
14	Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis. Renewable and Sustainable Energy Reviews, 2020, 121, 109676.	16.4	173
15	Eco-Friendly Castor Oil-Based Delivery System with Sustained Pesticide Release and Enhanced Retention. ACS Applied Materials & amp; Interfaces, 2020, 12, 37607-37618.	8.0	55
16	Exploring the Effects of Various Polymeric Backbones on the Performance of a Hydroxyaromatic 1,2,3-Triazole Anion Sensor. Sensors, 2020, 20, 2973.	3.8	3
17	Waterborne polyurethanes from castor oil-based polyols for next generation of environmentally-friendly hair-styling agents. Progress in Organic Coatings, 2020, 142, 105588.	3.9	26
18	Bio-Based Composites with Enhanced Matrix-Reinforcement Interactions from the Polymerization of α-Eleostearic Acid. Coatings, 2019, 9, 447.	2.6	8

RAFAEL LOPES QUIRINO

#	Article	IF	CITATIONS
19	Thermosetting polyurethanes prepared with the aid of a fully bio-based emulsifier with high bio-content, high solid content, and superior mechanical properties. Green Chemistry, 2019, 21, 526-537.	9.0	88
20	Synthesis of Bio-based Polymer Composites: Fabrication, Fillers, Properties, and Challenges. Lecture Notes in Bioengineering, 2019, , 29-55.	0.4	16
21	Tunable thermo-physical performance of castor oil-based polyurethanes with tailored release of coated fertilizers. Journal of Cleaner Production, 2019, 210, 1207-1215.	9.3	67
22	Vegetable Oils as a Chemical Platform. Gels Horizons: From Science To Smart Materials, 2018, , 125-152.	0.3	1
23	Biobased Polymers and Composites. International Journal of Polymer Science, 2018, 2018, 1-1.	2.7	5
24	Microwave Heating of Antibody-functionalized Carbon Nanotubes as a Feasible Cancer Treatment. Biomedical Physics and Engineering Express, 2018, 4, 045025.	1.2	10
25	Biocomposites from the reinforcement of a tung oil-based thermosetting resin with collagen. Materials Chemistry Frontiers, 2017, 1, 1795-1803.	5.9	8
26	Emulsion Polymerization of Tung Oil-Based Latexes with Asolectin as a Biorenewable Surfactant. Coatings, 2016, 6, 56.	2.6	4
27	Bio-Based Polymers with Potential for Biodegradability. Polymers, 2016, 8, 262.	4.5	190
28	Modified lignin for composite and pellet binder applications. International Journal of Experimental and Computational Biomechanics, 2015, 3, 200.	0.4	9
29	Asolectin from soybeans as a natural compatibilizer for celluloseâ€reinforced biocomposites from tung oil. Journal of Applied Polymer Science, 2015, 132, .	2.6	14
30	Effect of Microwave Cure on the Thermo-Mechanical Properties of Tung Oil-Based/Carbon Nanotube Composites. Coatings, 2015, 5, 557-575.	2.6	12
31	Synthesis and Thermomechanical Properties of Polyurethanes and Biocomposites Derived from Macauba Oil and Coconut Husk Fibers. Coatings, 2015, 5, 527-544.	2.6	13
32	Experimental study of thermopower of SWCNTs andSiCnanoparticles with B–P (born–phosphorus) sol–gel dopants. Materials Research Innovations, 2015, 19, 410-417.	2.3	1
33	Matrices from vegetable oils, cashew nut shell liquid, and other relevant systems for biocomposite applications. Green Chemistry, 2014, 16, 1700-1715.	9.0	92
34	Oxidation Behavior of Multiwalled Carbon Nanotubes Fluidized with Ozone. ACS Applied Materials & Interfaces, 2014, 6, 1835-1842.	8.0	47
35	Bio-based Thermosetting Polymers from Vegetable Oils. Journal of Renewable Materials, 2013, 1, 3-27.	2.2	57
36	A Novel Microwaveâ€Assisted Carbothermic Route for the Production of Copperâ€Carbon Nanotube Metal Matrix Composites Directly from Copper Oxide. Advanced Engineering Materials, 2013, 15, 366-372.	3.5	11

RAFAEL LOPES QUIRINO

#	Article	IF	CITATIONS
37	Oat hull composites from conjugated natural oils. Green Chemistry, 2012, 14, 1398.	9.0	13
38	Sugarcane bagasse composites from vegetable oils. Journal of Applied Polymer Science, 2012, 126, 860-869.	2.6	9
39	Rhâ€based Biphasic Isomerization of Carbon–Carbon Double Bonds in Natural Oils. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 1113-1124.	1.9	30
40	Soybean and linseed oilâ€based composites reinforced with wood flour and wood fibers. Journal of Applied Polymer Science, 2012, 124, 1520-1528.	2.6	33
41	Bioplastics, Biocomposites, and Biocoatings from Natural Oils. ACS Symposium Series, 2011, , 37-59.	0.5	4
42	Rice hull biocomposites. I. Preparation of a linseedâ€oilâ€based resin reinforced with rice hulls. Journal of Applied Polymer Science, 2011, 121, 2039-2049.	2.6	17
43	Rice hull biocomposites, part 2: Effect of the resin composition on the properties of the composite. Journal of Applied Polymer Science, 2011, 121, 2050-2059.	2.6	17
44	Synthesis, characterization and use of Nb2O5 based catalysts in producing biofuels by transesterification, esterification and pyrolysis. Journal of the Brazilian Chemical Society, 2009, 20, 954-966.	0.6	60
45	Synthesis and properties of soy hullâ€reinforced biocomposites from conjugated soybean oil. Journal of Applied Polymer Science, 2009, 112, 2033-2043.	2.6	38
46	Studying the Influence of Alumina Catalysts Doped with Tin and Zinc Oxides in the Soybean Oil Pyrolysis Reaction. JAOCS, Journal of the American Oil Chemists' Society, 2009, 86, 167.	1.9	27
47	Heats of combustion of biofuels obtained by pyrolysis and by transesterification and of biofuel/diesel blends. Thermochimica Acta, 2006, 450, 87-90.	2.7	63
48	Synthesis, Characterization and Use of Alumina Doped with TiO2 and ZrO2 to Produce Biofuels from Soybean Oil by Thermal Cracking, Transesterification and Hydroesterification. Journal of the Brazilian Chemical Society, 0, , .	0.6	1