Joseph M Dhahbi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11963510/publications.pdf Version: 2024-02-01

Ιοςέρη Μ. Πηληβι

#	Article	IF	CITATIONS
1	Plasma miRNA Profile of Crohn's Disease and Rheumatoid Arthritis Patients. Biology, 2022, 11, 508.	2.8	2
2	Specific PIWI-Interacting RNAs and Related Small Noncoding RNAs Are Associated With Ovarian Aging in Ames Dwarf (df/df) Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2021, 76, 1561-1570.	3.6	3
3	Organ reserve, excess metabolic capacity, and aging. Biogerontology, 2018, 19, 171-184.	3.9	32
4	Data Mining of Small RNA-Seq Suggests an Association Between Prostate Cancer and Altered Abundance of 5′ Transfer RNA Halves in Seminal Fluid and Prostatic Tissues. Biomarkers in Cancer, 2018, 10, 1179299X1875954.	3.6	10
5	Caloric restriction impacts plasma micro <scp>RNA</scp> s in rhesus monkeys. Aging Cell, 2017, 16, 1200-1203.	6.7	27
6	MicroRNAs Circulate in the Hemolymph of <i>Drosophila</i> and Accumulate Relative to Tissue microRNAs in an Age-Dependent Manner. Genomics Insights, 2016, 9, GEI.S38147.	3.0	17
7	Small Noncoding RNAs in Senescence and Aging. Healthy Ageing and Longevity, 2016, , 287-312.	0.2	1
8	Circulating micro <scp>RNA</scp> signature of genotypeâ€byâ€age interactions in the longâ€lived <scp>A</scp> mes dwarf mouse. Aging Cell, 2015, 14, 1055-1066.	6.7	54
9	Circulating small non coding RNA signature in head and neck squamous cell carcinoma. Oncotarget, 2015, 6, 19246-19263.	1.8	89
10	Combined activation of the energy and cellular-defense pathways may explain the potent anti-senescence activity of methylene blue. Redox Biology, 2015, 6, 426-435.	9.0	28
11	Nordihydroguaiaretic Acid Extends the Lifespan of <i>Drosophila</i> and Mice, Increases Mortality-Related Tumors and Hemorrhagic Diathesis, and Alters Energy Homeostasis in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1479-1489.	3.6	19
12	Differential Effects of Hepatocyte Nuclear Factor 4α Isoforms on Tumor Growth and T-Cell Factor 4/AP-1 Interactions in Human Colorectal Cancer Cells. Molecular and Cellular Biology, 2015, 35, 3471-3490.	2.3	57
13	Circulating small noncoding RNAs as biomarkers of aging. Ageing Research Reviews, 2014, 17, 86-98.	10.9	74
14	Phosphorylation of p53 by TAF1 Inactivates p53-Dependent Transcription in the DNA Damage Response. Molecular Cell, 2014, 53, 63-74.	9.7	46
15	Deep Sequencing of Serum Small RNAs Identifies Patterns of 5′ tRNA Half and YRNA Fragment Expression Associated with Breast Cancer. Biomarkers in Cancer, 2014, 6, BIC.S20764.	3.6	144
16	5′ tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC Genomics, 2013, 14, 298.	2.8	204
17	β1-Adrenergic receptor blockade extends the life span of Drosophila and long-lived mice. Age, 2013, 35, 2099-2109.	3.0	34
18	5′-YRNA fragments derived by processing of transcripts from specific YRNA genes and pseudogenes are abundant in human serum and plasma. Physiological Genomics, 2013, 45, 990-998.	2.3	98

Joseph M Dhahbi

#	Article	IF	CITATIONS
19	Deep sequencing identifies circulating mouse miRNAs that are functionally implicated in manifestations of aging and responsive to calorie restriction. Aging, 2013, 5, 130-141.	3.1	67
20	mRNA-Seq reveals complex patterns of gene regulation and expression in the mouse skeletal muscle transcriptome associated with calorie restriction. Physiological Genomics, 2012, 44, 331-344.	2.3	15
21	Novel Protein Kinase Signaling Systems Regulating Lifespan Identified by Small Molecule Library Screening Using Drosophila. PLoS ONE, 2012, 7, e29782.	2.5	26
22	Statin Treatment Increases Lifespan and Improves Cardiac Health in Drosophila by Decreasing Specific Protein Prenylation. PLoS ONE, 2012, 7, e39581.	2.5	54
23	Deep Sequencing Reveals Novel MicroRNAs and Regulation of MicroRNA Expression during Cell Senescence. PLoS ONE, 2011, 6, e20509.	2.5	73
24	Conserved and Tissue-Specific Genic and Physiologic Responses to Caloric Restriction and Altered IGFI Signaling in Mitotic and Postmitotic Tissues. Annual Review of Nutrition, 2007, 27, 193-217.	10.1	45
25	Gene Expression and Physiologic Responses of the Heart to the Initiation and Withdrawal of Caloric Restriction. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2006, 61, 218-231.	3.6	76
26	Identification of potential caloric restriction mimetics by microarray profiling. Physiological Genomics, 2005, 23, 343-350.	2.3	144
27	Additive regulation of hepatic gene expression by dwarfism and caloric restriction. Physiological Genomics, 2004, 17, 307-315.	2.3	136
28	Temporal linkage between the phenotypic and genomic responses to caloric restriction. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5524-5529.	7.1	234
29	Hepatic Gene Expression Profiling of Streptozotocin-Induced Diabetes. Diabetes Technology and Therapeutics, 2003, 5, 411-420.	4.4	25
30	Protein turnover, energy metabolism, aging, and caloric restriction. Advances in Cell Aging and Gerontology, 2003, , 69-86.	0.1	9
31	Aging of the Liver. , 2003, , 271-291.		5
32	Postprandial Induction of Chaperone Gene Expression Is Rapid in Mice. Journal of Nutrition, 2002, 132, 31-37.	2.9	17
33	Chaperone-Mediated Regulation of Hepatic Protein Secretion by Caloric Restriction. Biochemical and Biophysical Research Communications, 2001, 284, 335-339.	2.1	19
34	Caloric restriction alters the feeding response of key metabolic enzyme genes. Mechanisms of Ageing and Development, 2001, 122, 1033-1048.	4.6	97
35	Calories and aging alter gene expression for gluconeogenic, glycolytic, and nitrogen-metabolizing enzymes. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E352-E360.	3.5	64
36	Dietary Energy Tissue-Specifically Regulates Endoplasmic Reticulum Chaperone Gene Expression in the Liver of Mice ,. Journal of Nutrition, 1997, 127, 1758-1764.	2.9	49

#	Article	IF	CITATIONS
37	Dietary Energy Restriction in Mice Negatively Regulates Hepatic Glucose-Regulated Protein 78 (GRP78) Expression at the Posttranscriptional Level. Journal of Nutrition, 1996, 126, 416-423.	2.9	22
38	Dietary Calorie Restriction in Mice Induces Carbamyl Phosphate Synthetase I Gene Transcription Tissue Specifically. Journal of Biological Chemistry, 1996, 271, 3500-3506.	3.4	33