## Tata Narasinga Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11962492/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Design and development of honeycomb structured nitrogen-rich cork derived nanoporous activated carbon for high-performance supercapacitors. Journal of Energy Storage, 2021, 34, 102017.                                                  | 8.1  | 28        |
| 2  | Jute sticks derived novel graphitic porous carbon nanosheets as Liâ€ion battery anode material with superior electrochemical properties. International Journal of Energy Research, 2020, 44, 2289-2297.                                   | 4.5  | 29        |
| 3  | Achieving High Voltage and Excellent Rate Capability Supercapacitor Electrodes Derived From<br>Bioâ€renewable and Sustainable Resource. ChemistrySelect, 2020, 5, 8759-8772.                                                              | 1.5  | 13        |
| 4  | Hierarchical Activated Carbon Fibers as a Sustainable Electrode and Natural Seawater as a Sustainable<br>Electrolyte for Highâ€Performance Supercapacitor. Energy Technology, 2020, 8, 2000417.                                           | 3.8  | 20        |
| 5  | Corn husk derived activated carbon with enhanced electrochemical performance forÂhigh-voltage supercapacitors. Journal of Power Sources, 2020, 471, 228387.                                                                               | 7.8  | 123       |
| 6  | Conversion of Biomass Waste into High Performance Supercapacitor Electrodes for Real-Time<br>Supercapacitor Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 17175-17185.                                                | 6.7  | 153       |
| 7  | Robust, Environmentally Benign Synthesis of Nanoporous Graphene Sheets from Biowaste for<br>Ultrafast Supercapacitor Application. ACS Sustainable Chemistry and Engineering, 2019, 7, 2516-2529.                                          | 6.7  | 76        |
| 8  | Electrode mass ratio impact on electrochemical capacitor performance. Electrochimica Acta, 2019, 298, 347-359.                                                                                                                            | 5.2  | 27        |
| 9  | One-step induced porous graphitic carbon sheets as supercapacitor electrode material with improved rate capability. Materials Letters, 2019, 236, 205-209.                                                                                | 2.6  | 32        |
| 10 | Conversion of Solar Energy into Electrical Energy Storage: Supercapacitor as an Ultrafast<br>Energyâ€Storage Device Made from Biodegradable Agarâ€Agar as a Novel and Lowâ€Cost Carbon Precursor.<br>Global Challenges, 2018, 2, 1800037. | 3.6  | 15        |
| 11 | Facile Synthesis of Corn Silk Derived Nanoporous Carbon for an Improved Supercapacitor Performance. Journal of the Electrochemical Society, 2018, 165, A3369-A3379.                                                                       | 2.9  | 55        |
| 12 | Activated carbon fibres as high performance supercapacitor electrodes with commercial level mass loading. Carbon, 2018, 140, 465-476.                                                                                                     | 10.3 | 120       |
| 13 | Facile synthesis of mesoporous carbon from furfuryl alcohol-butanol system by EISA process for supercapacitors with enhanced rate capability. Journal of Alloys and Compounds, 2017, 723, 488-497.                                        | 5.5  | 20        |
| 14 | Facile One-Step Route for the Development of in Situ Cocatalyst-Modified Ti <sup>3+</sup> Self-Doped<br>TiO <sub>2</sub> for Improved Visible-Light Photocatalytic Activity. ACS Applied Materials &<br>Interfaces, 2016, 8, 27642-27653. | 8.0  | 55        |
| 15 | Efficient ZnO-Based Visible-Light-Driven Photocatalyst for Antibacterial Applications. ACS Applied<br>Materials & Interfaces, 2014, 6, 13138-13148.                                                                                       | 8.0  | 122       |
| 16 | Size-controlled SnO2 hollow spheres via a template free approach as anodes for lithium ion batteries.<br>Nanoscale, 2014, 6, 10762-10771.                                                                                                 | 5.6  | 46        |
| 17 | Superhydrophilic Graphene-Loaded TiO <sub>2</sub> Thin Film for Self-Cleaning Applications. ACS Applied Materials & amp; Interfaces, 2013, 5, 207-212.                                                                                    | 8.0  | 210       |
| 18 | MoO <sub>2</sub> /Multiwalled Carbon Nanotubes (MWCNT) Hybrid for Use as a Li-Ion Battery Anode.<br>ACS Applied Materials & Interfaces, 2013, 5, 2555-2566.                                                                               | 8.0  | 141       |

| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Detection of Hydroxyl Radicals Formed on an Anodically Polarized Diamond Electrode Surface in<br>Aqueous Media. Chemistry Letters, 2003, 32, 396-397.                              | 1.3 | 17        |
| 20 | New directions in structuring and electrochemical applications of boron-doped diamond thin films.<br>Diamond and Related Materials, 2001, 10, 1799-1803.                           | 3.9 | 20        |
| 21 | A facile oneâ€step synthesis of bioâ€inspired porous graphitic carbon sheets for improved lithiumâ€sulfur<br>battery performance. International Journal of Energy Research, 0, , . | 4.5 | 5         |