Anshu Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11962008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tannase production through solid-state fermentation of Shorea robusta deoiled seed cake: an industrial biomass using Aspergillus flavus TF-8 for potential application in gallic acid synthesis. Biomass Conversion and Biorefinery, 2023, 13, 6663-6673.	4.6	4
2	Using indigenous bacterial isolate Nesterenkonia lacusekhoensis for removal of azo dyes: A low-cost ecofriendly approach for bioremediation of textile wastewaters. Environment, Development and Sustainability, 2022, 24, 5344-5367.	5.0	17
3	Microbial degradation of reactive red-35 dye: Upgraded progression through Box–Behnken design modeling and cyclic acclimatization. Journal of Water Process Engineering, 2021, 40, 101782.	5.6	8
4	Eco-Friendly Bioremediation Approach for Dye Removal from Wastewaters: Challenges and Prospects. , 2021, , 273-297.		1
5	Cellular adaptation responses in a halotolerant Exiguobacterium exhibiting organic solvent tolerance with simultaneous protease production. Environmental Technology and Innovation, 2021, 23, 101803.	6.1	7
6	Microplastic pollution in aquatic environments with special emphasis on riverine systems: Current understanding and way forward. Journal of Environmental Management, 2021, 293, 112860.	7.8	40
7	Microplastics as contaminants in Indian environment: a review. Environmental Science and Pollution Research, 2021, 28, 68025-68052.	5.3	23
8	Sustainable synthesis of silver nanoparticles using exposed X-ray sheets and forest-industrial waste biomass: Assessment of kinetic and catalytic properties for degradation of toxic dyes mixture. Journal of Environmental Management, 2019, 247, 698-711.	7.8	20
9	Enhanced decolorization of reactive violet dye 1 by halo-alkaliphilic Nesterenkonia strain: Process optimization, short acclimatization and reusability analysis in batch cycles. Chemical Engineering Research and Design, 2019, 131, 116-126.	5.6	31
10	Alleviation of hexavalent chromium by using microorganisms: insight into the strategies and complications. Water Science and Technology, 2019, 79, 411-424.	2.5	40
11	Impact of heavy metals on inhibitory concentration of Escherichia coli—a case study of river Yamuna system, Delhi, India. Environmental Monitoring and Assessment, 2018, 190, 674.	2.7	19
12	Efficient utilization of Sal deoiled seed cake (DOC) as reducing agent in synthesis of silver nanoparticles: Application in treatment of dye containing wastewater and harnessing reusability potential for cost-effectiveness. Journal of Molecular Liquids, 2018, 268, 691-699.	4.9	16
13	Remediation of Phenol Using Microorganisms: Sustainable Way to Tackle the Chemical Pollution Menace. Current Organic Chemistry, 2018, 22, 370-385.	1.6	12
14	Degradation of azo dye methyl red by alkaliphilic, halotolerant Nesterenkonia lacusekhoensis EMLA3: application in alkaline and salt-rich dyeing effluent treatment. Extremophiles, 2017, 21, 479-490.	2.3	51
15	Evaluation of heavy metal contamination using environmetrics and indexing approach for River Yamuna, Delhi stretch, India. Water Science, 2017, 31, 52-66.	1.6	129
16	Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environmental Science and Pollution Research, 2017, 24, 14637-14656.	5.3	113
17	Study on Ambient Air Quality of Megacity Delhi, India During Odd–Even Strategy. Mapan - Journal of Metrology Society of India, 2017, 32, 155-165.	1.5	34
18	Synthesis of silver nanoparticles (AgNPs) using <i>Ficus retusa</i> leaf extract for potential application as antibacterial and dye decolourising agents. Inorganic and Nano-Metal Chemistry, 2017, 47, 1520-1529.	1.6	19

Anshu Gupta

#	Article	IF	CITATIONS
19	Simultaneous Bioremediation of Phenol and Cr (VI) from Tannery Wastewater Using Bacterial Consortium. International Journal of Applied Sciences and Biotechnology, 2015, 3, 50-55.	0.8	20
20	Assessment of phenol-degrading ability ofAcinetobactersp. B9 for its application in bioremediation of phenol-contaminated industrial effluents. Chemistry and Ecology, 2015, 31, 607-621.	1.6	11
21	Valorization of Sal Deoiled Cake as Media for Acidic Amylase and Invertase Co-Production by A spergillus niger â€NJ-1: Optimization by Response Surface Methodology and Application in Oligosaccharide Synthesis. Journal of Food Processing and Preservation, 2015, 39, 2548-2561.	2.0	1
22	Efficacy of Acinetobacter sp. B9 for simultaneous removal of phenol and hexavalent chromium from co-contaminated system. Applied Microbiology and Biotechnology, 2014, 98, 9829-9841.	3.6	61
23	Comparative fermentation studies on amylase production by Aspergillus flavus TF-8 using Sal (Shorea) Tj ETQq1 1 Industrial Crops and Products, 2014, 57, 158-165.	0.78431 5.2	4 rgBT /Ove 19
24	Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environmental Science and Pollution Research, 2013, 20, 6628-6637.	5.3	85
25	Effectiveness of Sal Deoiled Seed Cake as an Inducer for Protease Production from Aeromonas sp. S1 for its Application in Kitchen Wastewater Treatment. Applied Biochemistry and Biotechnology, 2013, 170, 1896-1908.	2.9	7
26	Novel Application of Mahua (<i>Madhuca</i> sp.) Flowers for Augmented Protease Production from <i>Aeromonas</i> sp. S1. Natural Product Communications, 2012, 7, 1934578X1200701.	0.5	1
27	Enhanced lipase production from <i>Aeromonas</i> sp. S1 using Sal deoiled seed cake as novel natural substrate for potential application in dairy wastewater treatment. Journal of Chemical Technology and Biotechnology, 2012, 87, 418-426.	3.2	18
28	Enzymes from solvent-tolerant microbes: Useful biocatalysts for non-aqueous enzymology. Critical Reviews in Biotechnology, 2009, 29, 44-54.	9.0	85
29	Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresource Technology, 2008, 99, 1729-1735.	9.6	206
30	Solvent-Stable <i>Pseudomonas aeruginosa</i> PseA Protease Gene: Identification, Molecular Characterization, Phylogenetic and Bioinformatic Analysis to Study Reasons for Solvent Stability. Journal of Molecular Microbiology and Biotechnology, 2008, 15, 234-243.	1.0	14
31	Enhanced production and characterization of a solvent stable protease from solvent tolerant Pseudomonas aeruginosa PseA. Enzyme and Microbial Technology, 2007, 42, 11-16.	3.2	64
32	A solvent tolerant isolate of. Bioresource Technology, 2006, 97, 99-103.	9.6	27
33	A protease stable in organic solvents from solvent tolerant strain of Pseudomonas aeruginosa. Bioresource Technology, 2006, 97, 1788-1793.	9.6	65
34	One-step purification and characterization of an alkaline protease from haloalkaliphilic Bacillus sp Journal of Chromatography A, 2005, 1075, 103-108.	3.7	115
35	Purification and characterization of a solvent stable protease from Pseudomonas aeruginosa PseA. Journal of Chromatography A, 2005, 1069, 155-161.	3.7	108
36	Title is missing!. Biotechnology Letters, 2002, 24, 2005-2009.	2.2	5