
David Munday

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11961418/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large-Eddy Simulations of a Supersonic Jet and Its Near-Field Acoustic Properties. AIAA Journal, 2009, 47, 1849-1865.	2.6	100
2	Active Control of Separation on a Wing with Oscillating Camber. Journal of Aircraft, 2002, 39, 187-189.	2.4	59
3	Acoustic Effect of Chevrons on Supersonic Jets Exiting Conical Convergent-Divergent Nozzles. AIAA Journal, 2012, 50, 2336-2350.	2.6	29
4	Impact of Deck and Jet Blast Deflector on the Flow and Acoustic Properties of Imperfectly Expanded Supersonic Jets. , 2013, , .		29
5	Active control of separation on a wing with conformal camber. , 2001, , .		26
6	Supersonic Jet Noise Reduction Technologies for Gas Turbine Engines. Journal of Engineering for Gas Turbines and Power, 2011, 133, .	1.1	19
7	Experimental and Numerical Investigation ofAerodynamic Flow Control Using Oscillating Adaptive Surfaces. , 2002, , .		18
8	Optimization of a multiple pulse detonation engine-crossover system. Applied Thermal Engineering, 2016, 96, 463-472.	6.0	12
9	Experimental and Numerical Investigation of a Supersonic C-D Chevron Nozzle. , 2009, , .		7
10	Dependence of Film Cooling Effectiveness on Three-Dimensional Printed Cooling Holes. Journal of Heat Transfer, 2017, 139, .	2.1	7
11	Impact of Mechanical Chevrons on Supersonic Jet Flow and Noise. , 2009, , .		6
12	Experimental and Numerical Investigation of a Supersonic C-D Nozzle. , 2009, , .		6
13	Effect of Nozzle-exit Flow Conditions on the Flow and Acoustic Properties of Imperfectly Expanded Supersonic Jets. , 2012, , .		6
14	Parametric Study of Direct Detonation Initiation from Shock Transfer Through a Crossover Tube. , 2012, , .		6
15	Experimental and Numerical Investigation of a Supersonic Convergent-Divergent Nozzle. AIAA Journal, 2012, 50, 1462-1475.	2.6	6
16	Characterization of Shock Wave Transfer in a Pulse Detonation Engine–Crossover System. AIAA Journal, 2015, 53, 3674-3685.	2.6	6
17	Flow control experiments for low Re adaptive airfoils. , 2000, , .		5
18	Experimental Study of Shock Transfer in a Multiple Pulse Detonation-Crossover System. , 2012, , .		5

Experimental Study of Shock Transfer in a Multiple Pulse Detonation-Crossover System. , 2012, , .

DAVID MUNDAY

#	Article	IF	CITATIONS
19	Experimental Study of Sustained Shock Initiated Detonation in a Multiple Pulse Detonation-Crossover System. , 2013, , .		5
20	OH* Chemiluminescence in a Multipoint Combustion System: Steady State and Limit Cycle Behavior. , 2013, , .		5
21	Supersonic Turbojet Noise Reduction. International Journal of Aeroacoustics, 2013, 12, 215-243.	1.3	5
22	Dual Crossover Dual Shock Ignition of a Pulse Detonation Engine. , 2012, , .		3
23	Thermoacoustic Coupling in a Multinozzle Staged Combustor. Journal of Propulsion and Power, 2016, 32, 856-868.	2.2	3
24	Forward Flight Effects on the Shock Structure From a Chevron C-D Nozzle. , 2010, , .		1
25	Techniques for Supersonic Turbojet Noise Reduction. , 2012, , .		0
26	Film Cooling Overall Effectiveness of Shaped Holes at Elevated Temperatures. Journal of Thermophysics and Heat Transfer, 2021, 35, 644-649.	1.6	0