
Martien A Cohen Stuart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11960248/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emerging applications of stimuli-responsive polymer materials. Nature Materials, 2010, 9, 101-113.	27.5	5,007
2	Extracellular-matrix tethering regulates stem-cell fate. Nature Materials, 2012, 11, 642-649.	27.5	1,346
3	Jack of all trades: versatile catechol crosslinking mechanisms. Chemical Society Reviews, 2014, 43, 8271-8298.	38.1	532
4	Polyelectrolyte complexes: Bulk phases and colloidal systems. Journal of Colloid and Interface Science, 2011, 361, 407-422.	9.4	504
5	Formation and Stability of Multilayers of Polyelectrolytes. Langmuir, 1996, 12, 3675-3681.	3.5	375
6	Complex coacervate core micelles. Advances in Colloid and Interface Science, 2009, 147-148, 300-318.	14.7	348
7	Binodal Compositions of Polyelectrolyte Complexes. Macromolecules, 2010, 43, 6476-6484.	4.8	334
8	Experimental aspects of polymer adsorption at solid/solution interfaces. Advances in Colloid and Interface Science, 1985, 24, 143-239.	14.7	283
9	Network Forming Properties of Various Proteins Adsorbed at the Air/Water Interface in Relation to Foam Stability. Journal of Colloid and Interface Science, 2002, 254, 175-183.	9.4	228
10	Complex Coacervation Core Micelles. Colloidal Stability and Aggregation Mechanism. Langmuir, 2004, 20, 1073-1084.	3.5	199
11	Double-Faced Micelles from Water-Soluble Polymers. Angewandte Chemie - International Edition, 2006, 45, 6673-6676.	13.8	174
12	Relaxation Dynamics at Different Time Scales in Electrostatic Complexes: Time-Salt Superposition. Physical Review Letters, 2010, 105, 208301.	7.8	171
13	Linear Viscoelasticity of Polyelectrolyte Complex Coacervates. Macromolecules, 2013, 46, 1633-1641.	4.8	170
14	Interfacial tension between a complex coacervate phase and its coexisting aqueous phase. Soft Matter, 2010, 6, 172-178.	2.7	160
15	Adsorption of the Protein Bovine Serum Albumin in a Planar Poly(acrylic acid) Brush Layer As Measured by Optical Reflectometry. Langmuir, 2008, 24, 6575-6584.	3.5	154
16	Assembly of polyelectrolyte-containing block copolymers in aqueous media. Current Opinion in Colloid and Interface Science, 2005, 10, 30-36.	7.4	148
17	Pushing the glass transition towards random close packing using self-propelled hard spheres. Nature Communications, 2013, 4, 2704.	12.8	148
18	Water-Soluble Reversible Coordination Polymers:Â Chains and Rings. Macromolecules, 2003, 36, 7035-7044.	4.8	144

#	Article	IF	CITATIONS
19	Electrostatic Free Energy of Weakly Charged Macromolecules in Solution and Intermacromolecular Complexes Consisting of Oppositely Charged Polymers. Langmuir, 2004, 20, 2785-2791.	3.5	142
20	Multiresponsive Reversible Gels Based on Chargeâ€Driven Assembly. Angewandte Chemie - International Edition, 2010, 49, 708-711.	13.8	138
21	The Electrical Double Layer on Cold Probed by Electrokinetic and Surface Force Measurements. Journal of Colloid and Interface Science, 2002, 248, 88-95.	9.4	135
22	Linear Rheology of Water-Soluble Reversible Neodymium(III) Coordination Polymers. Journal of the American Chemical Society, 2004, 126, 15802-15808.	13.7	131
23	Tribology of o/w Emulsions Under Mouth-like Conditions: Determinants of Friction. Food Biophysics, 2007, 2, 158-171.	3.0	129
24	Fracture and Self-Healing in a Well-Defined Self-Assembled Polymer Network. Macromolecules, 2010, 43, 3542-3548.	4.8	121
25	Heatâ€induced denaturation and aggregation of ovalbumin at neutral pH described by irreversible firstâ€order kinetics. Protein Science, 2003, 12, 2693-2703.	7.6	119
26	EFFECT OF DROPLET–MATRIX INTERACTIONS ON LARGE DEFORMATION PROPERTIES OF EMULSIONâ€FILLED GELS. Journal of Texture Studies, 2007, 38, 511-535.	2.5	117
27	On the Stability and Morphology of Complex Coacervate Core Micelles: From Spherical to Wormlike Micelles. Langmuir, 2012, 28, 14180-14191.	3.5	113
28	Modulating Surface Rheology by Electrostatic Protein/Polysaccharide Interactions. Langmuir, 2006, 22, 10089-10096.	3.5	107
29	Deformation and fracture of emulsion-filled gels: Effect of oil content and deformation speed. Food Hydrocolloids, 2009, 23, 1381-1393.	10.7	106
30	Acid-Induced Cold Gelation of Globular Proteins:Â Effects of Protein Aggregate Characteristics and Disulfide Bonding on Rheological Properties. Journal of Agricultural and Food Chemistry, 2004, 52, 623-631.	5.2	103
31	Hierarchical Self-Assembly in Solutions Containing Metal Ions, Ligand, and Diblock Copolymer. Angewandte Chemie - International Edition, 2007, 46, 1807-1809.	13.8	101
32	Influence of the overall charge and local charge density of pectin on the complex formation between pectin and β-lactoglobulin. Food Hydrocolloids, 2009, 23, 765-772.	10.7	99
33	Structure and Dynamics of Polyelectrolyte Complex Coacervates Studied by Scattering of Neutrons, X-rays, and Light. Macromolecules, 2013, 46, 4596-4605.	4.8	96
34	Synthesis of Novel Well-Defined Poly(vinyl acetate)- <i>b</i> -poly(acrylonitrile) and Derivatized Water-Soluble Poly(vinyl alcohol)- <i>b</i> -poly(acrylic acid) Block Copolymers by Cobalt-Mediated Radical Polymerization. Macromolecules, 2008, 41, 2353-2360.	4.8	90
35	Field Theoretical Analysis of Driving Forces for the Uptake of Proteins by Like-Charged Polyelectrolyte Brushes: Effects of Charge Regulation and Patchiness. Langmuir, 2010, 26, 249-259.	3.5	86
36	Salt-induced release of lipase from polyelectrolyte complex micelles. Soft Matter, 2009, 5, 242-250.	2.7	84

#	Article	IF	CITATIONS
37	Preparation and Characterization of Oxidized Starch Polymer Microgels for Encapsulation and Controlled Release of Functional Ingredients. Biomacromolecules, 2009, 10, 1931-1938.	5.4	81
38	Conformational Aspects of Proteins at the Air/Water Interface Studied by Infrared Reflectionâ^'Absorption Spectroscopy. Langmuir, 2003, 19, 2922-2928.	3.5	80
39	Use of polysaccharides to control protein adsorption to the air–water interface. Food Hydrocolloids, 2006, 20, 872-878.	10.7	78
40	Fat retention at the tongue and the role of saliva: Adhesion and spreading of â€~protein-poor' versus â€~protein-rich' emulsions. Journal of Colloid and Interface Science, 2008, 321, 21-29.	9.4	77
41	Production of protein-based polymers in Pichia pastoris. Biotechnology Advances, 2019, 37, 642-666.	11.7	77
42	Spontaneous symmetry breaking: formation of Janus micelles. Soft Matter, 2009, 5, 999-1005.	2.7	74
43	Structure and Stability of Complex Coacervate Core Micelles with Lysozyme. Biomacromolecules, 2007, 8, 2219-2227.	5.4	73
44	Reaction Pathways in Catechol/Primary Amine Mixtures: A Window on Crosslinking Chemistry. PLoS ONE, 2016, 11, e0166490.	2.5	73
45	Irreversible Structural Transitions in Mixed Micelles of Oppositely Charged Diblock Copolymers in Aqueous Solution. Macromolecules, 2007, 40, 2158-2164.	4.8	72
46	Self-Assembly of Ultralong Polyion Nanoladders Facilitated by Ionic Recognition and Molecular Stiffness. Journal of the American Chemical Society, 2014, 136, 1942-1947.	13.7	70
47	Salt-Induced Disintegration of Lysozyme-Containing Polyelectrolyte Complex Micelles. Langmuir, 2009, 25, 11425-11430.	3.5	68
48	Comparison of complex coacervate core micelles from two diblock copolymers or a single diblock copolymer with a polyelectrolyte. Physical Chemistry Chemical Physics, 2006, 8, 4242.	2.8	64
49	Simultaneous determination of adenosine triphosphate and its metabolites in human whole blood by RP-HPLC and UV-detection. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 864, 43-51.	2.3	64
50	Reversibility and Relaxation Behavior of Polyelectrolyte Complex Micelle Formation. Journal of Physical Chemistry B, 2009, 113, 5431-5439.	2.6	63
51	Crystallizing hard-sphere glasses by doping with active particles. Soft Matter, 2014, 10, 6609-6613.	2.7	63
52	Ultralow Adhesion and Friction of Fluoro-Hydro Alkyne-Derived Self-Assembled Monolayers on H-Terminated Si(111). Langmuir, 2012, 28, 17690-17700.	3.5	60
53	Triblock Protein Copolymers Forming Supramolecular Nanotapes and pH-Responsive Gels. Macromolecules, 2009, 42, 1002-1009.	4.8	59
54	Cylindrical Cell Model for the Electrostatic Free Energy of Polyelectrolyte Complexes. Langmuir, 2004, 20, 4764-4770.	3.5	58

#	Article	IF	CITATIONS
55	Temperature Responsive Complex Coacervate Core Micelles With a PEO and PNIPAAm Corona. Journal of Physical Chemistry B, 2008, 112, 10833-10840.	2.6	58
56	Stability of Complex Coacervate Core Micelles Containing Metal Coordination Polymer. Journal of Physical Chemistry B, 2008, 112, 10908-10914.	2.6	58
57	Physical gels of telechelic triblock copolymers with precisely defined junction multiplicity. Soft Matter, 2009, 5, 2057.	2.7	58
58	The effect of molecular composition and crosslinking on adhesion of a bio-inspired adhesive. Polymer Chemistry, 2015, 6, 3121-3130.	3.9	58
59	Controlled mixing of lanthanide(iii) ions in coacervate core micelles. Chemical Communications, 2013, 49, 3736.	4.1	57
60	Corncob cellulose nanosphere as an eco-friendly detergent. Nature Sustainability, 2020, 3, 448-458.	23.7	56
61	Elucidating the relationship between the spreading coefficient, surface-mediated partial coalescence and the whipping time of artificial cream. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 260, 71-78.	4.7	55
62	Effects of Polyelectrolyte Complex Micelles and Their Components on the Enzymatic Activity of Lipase. Langmuir, 2010, 26, 9802-9808.	3.5	55
63	Interactions between Acid- and Base-Functionalized Surfaces. Journal of Colloid and Interface Science, 2002, 252, 138-148.	9.4	54
64	Nanoribbons Selfâ€Assembled from Triblock Peptide Polymers and Coordination Polymers. Angewandte Chemie - International Edition, 2008, 47, 4192-4195.	13.8	54
65	Structure of mixed β-lactoglobulin/pectin adsorbed layers at air/water interfaces; a spectroscopy study. Journal of Colloid and Interface Science, 2008, 317, 137-147.	9.4	54
66	Dilute Self-Healing Hydrogels of Silk-Collagen-Like Block Copolypeptides at Neutral pH. Biomacromolecules, 2014, 15, 699-706.	5.4	54
67	Processable and Luminescent Supramolecular Hydrogels from Complex Coacervation of Polycations with Lanthanide Coordination Polyanions. Macromolecules, 2019, 52, 8643-8650.	4.8	54
68	Novel water-soluble block copolymers of dimethylaminoethyl methacrylate and dihydroxypropyl methacrylate. Macromolecular Chemistry and Physics, 1996, 197, 2553-2564.	2.2	52
69	Complex Coacervate Core Micelles from Iron-Based Coordination Polymers. Journal of Physical Chemistry B, 2010, 114, 8313-8319.	2.6	52
70	Transient network topology of interconnected polyelectrolyte complex micelles. Soft Matter, 2011, 7, 1378.	2.7	52
71	Shape-Memory Effects in Biopolymer Networks with Collagen-Like Transient Nodes. Biomacromolecules, 2011, 12, 2285-2292.	5.4	51
72	Core and Corona Structure of Mixed Polymeric Micelles. Macromolecules, 2006, 39, 5952-5955.	4.8	50

#	Article	IF	CITATIONS
73	Direct observation of adhesion and spreading of emulsion droplets at solid surfaces. Soft Matter, 2008, 4, 1079.	2.7	50
74	Brownian particles in transient polymer networks. Physical Review E, 2008, 77, 061502.	2.1	50
75	Morphology Tuning of Aggregation-Induced Emission Probes by Flash Nanoprecipitation: Shape and Size Effects on in Vivo Imaging. ACS Applied Materials & Interfaces, 2018, 10, 25186-25193.	8.0	50
76	Self-consistent field theory of protein adsorption in a non-Gaussian polyelectrolyte brush. Physical Review E, 2006, 73, 011802.	2.1	48
77	Competitive Adsorption of Nonionic Surfactant and Nonionic Polymer on Silica. Langmuir, 2007, 23, 5532-5540.	3.5	48
78	Precise Coating of a Wide Range of DNA Templates by a Protein Polymer with a DNA Binding Domain. ACS Nano, 2017, 11, 144-152.	14.6	48
79	Wormlike Aggregates from a Supramolecular Coordination Polymer and a Diblock Copolymer. Journal of Physical Chemistry B, 2007, 111, 11662-11669.	2.6	47
80	Overall Charge and Local Charge Density of Pectin Determines the Enthalpic and Entropic Contributions to Complexation with \hat{l}^2 -Lactoglobulin. Biomacromolecules, 2010, 11, 3578-3583.	5.4	47
81	Electrostatically Driven Coassembly of a Diblock Copolymer and an Oppositely Charged Homopolymer in Aqueous Solutions. Macromolecules, 2007, 40, 8476-8482.	4.8	46
82	Reversible assembly of oppositely charged hairy colloids in water. Soft Matter, 2011, 7, 8281.	2.7	46
83	Rh nanoclusters encaged in hollow mesoporous silica nanoreactors with enhanced catalytic performance for phenol selective hydrogenation. Chemical Engineering Journal, 2020, 397, 125484.	12.7	46
84	Correlation between Mechanical Behavior of Protein Films at the Air/Water Interface and Intrinsic Stability of Protein Molecules. Langmuir, 2005, 21, 4083-4089.	3.5	45
85	A Generic Method for Preparing Hollow Mesoporous Silica Catalytic Nanoreactors with Metal Oxide Nanoparticles inside Their Cavities. Angewandte Chemie - International Edition, 2018, 57, 16458-16463.	13.8	45
86	Unidirectional Living Growth of Self-Assembled Protein Nanofibrils Revealed by Super-resolution Microscopy. ACS Nano, 2016, 10, 4973-4980.	14.6	44
87	Rouse Dynamics of Colloids Bound to Polymer Networks. Physical Review Letters, 2007, 99, 208301.	7.8	43
88	A Supramolecular Crosslinker To Give Saltâ€Resistant Polyion Complex Micelles and Improved MRI Contrast Agents. Angewandte Chemie - International Edition, 2018, 57, 12680-12684.	13.8	42
89	Dynamic Force Spectroscopy of Oppositely Charged Polyelectrolyte Brushes. Macromolecules, 2010, 43, 1543-1550.	4.8	41
90	Direct Measurement of the Strength of Single Ionic Bonds between Hydrated Charges. ACS Nano, 2012, 6, 5297-5303.	14.6	41

#	Article	IF	CITATIONS
91	Adsorption of Anionic Surfactants in a Nonionic Polymer Brush: Experiments, Comparison with Mean-Field Theory, and Implications for Brushâ^'Particle Interaction. Langmuir, 2009, 25, 9252-9261.	3.5	40
92	Electrokinetic Characterization of Poly(Acrylic Acid) and Poly(Ethylene Oxide) Brushes in Aqueous Electrolyte Solutions. Langmuir, 2005, 21, 5108-5114.	3.5	39
93	Phase Behavior of Mixtures of Oppositely Charged Nanoparticles:  Heterogeneous Poissonâ^'Boltzmann Cell Model Applied to Lysozyme and Succinylated Lysozyme. Langmuir, 2006, 22, 1291-1300.	3.5	39
94	Can charged (block co)polymers act as stabilisers and flocculants of oxides?. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 117, 77-88.	4.7	37
95	Interaction of Particles with a Polydisperse Brush: A Self-Consistent-Field Analysis. Macromolecules, 2009, 42, 5881-5891.	4.8	37
96	Uptake and release kinetics of lysozyme in and from an oxidized starch polymer microgel. Soft Matter, 2011, 7, 10377.	2.7	37
97	Binding of Î ² -Lactolobulin to Pectins Varying in their Overall and Local Charge Density. Biomacromolecules, 2009, 10, 3246-3252.	5.4	36
98	Antimicrobial lysozyme-containing starch microgel to target and inhibit amylase-producing microorganisms. Food Hydrocolloids, 2012, 28, 28-35.	10.7	36
99	Mobility of lysozyme inside oxidized starch polymer microgels. Soft Matter, 2011, 7, 1926.	2.7	35
100	Monitoring Protein Capsid Assembly with a Conjugated Polymer Strain Sensor. Journal of the American Chemical Society, 2015, 137, 9800-9803.	13.7	35
101	Adsorption of Charged Macromolecules at a Gold Electrode. Langmuir, 2004, 20, 9703-9713.	3.5	34
102	Characteristic Differences in the Formation of Complex Coacervate Core Micelles from Neodymium and Zinc-Based Coordination Polymers. Journal of Physical Chemistry B, 2007, 111, 5811-5818.	2.6	34
103	Polysaccharide Charge Density Regulating Protein Adsorption to Air/Water Interfaces by Protein/Polysaccharide Complex Formation. Journal of Physical Chemistry B, 2007, 111, 12969-12976.	2.6	34
104	The influence of charge ratio on transient networks of polyelectrolyte complex micelles. Soft Matter, 2012, 8, 104-117.	2.7	34
105	Self-Assembly of Silk-Collagen-like Triblock Copolymers Resembles a Supramolecular Living Polymerization. ACS Nano, 2012, 6, 133-140.	14.6	34
106	From Micelles to Fibers: Balancing Self-Assembling and Random Coiling Domains in pH-Responsive Silk-Collagen-Like Protein-Based Polymers. Biomacromolecules, 2014, 15, 3349-3357.	5.4	34
107	Stable Polymer Micelles Formed by Metal Coordination. Macromolecules, 2012, 45, 7179-7185.	4.8	33
108	Prediction of solvent dependent β-roll formation of a self-assembling silk-like protein domain. Soft Matter, 2009, 5, 2658.	2.7	32

#	Article	IF	CITATIONS
109	Covalently Attached Organic Monolayers onto Silicon Carbide from 1-Alkynes: Molecular Structure and Tribological Properties. Langmuir, 2013, 29, 4019-4031.	3.5	32
110	Flow and Fracture Phenomena in Adsorbed Protein Layers at the Air/Water Interface in Connection with Spreading Oil Droplets. Langmuir, 2003, 19, 10210-10216.	3.5	31
111	Net Charge Affects Morphology and Visual Properties of Ovalbumin Aggregates. Biomacromolecules, 2008, 9, 3165-3172.	5.4	31
112	Genetically engineered silk–collagen-like copolymer for biomedical applications: Production, characterization and evaluation of cellular response. Acta Biomaterialia, 2014, 10, 3620-3629.	8.3	31
113	Phase Diagram of Coacervate Complexes Containing Reversible Coordination Structures. Macromolecules, 2012, 45, 8903-8909.	4.8	30
114	Interplay between Folding and Assembly of Fibril-Forming Polypeptides. Physical Review Letters, 2013, 111, 058101.	7.8	30
115	Effect of Spacer Length between Phenyl Pendant and Backbone in Comb Copolymers on Flow Ability of Waxy Oil with Asphaltenes. Industrial & Engineering Chemistry Research, 2017, 56, 12447-12455.	3.7	30
116	Functional Polyion Complex Vesicles Enabled by Supramolecular Reversible Coordination Polyelectrolytes. Angewandte Chemie - International Edition, 2019, 58, 8494-8498.	13.8	30
117	Thin polymer films as sacrificial layers for easier cleaning. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 358, 6-12.	4.7	29
118	Self-Consistent-Field Prediction for the Persistence Length of Wormlike Micelles of Nonionic Surfactants. Journal of Physical Chemistry B, 2003, 107, 10912-10918.	2.6	28
119	Spreading of partially crystallized oil droplets on an air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 240, 83-92.	4.7	28
120	Sweet brushes and dirty proteins. Soft Matter, 2007, 3, 754.	2.7	28
121	Spherocylindrical coacervate core micelles formed by a supramolecular coordination polymer and a diblock copolymer. Soft Matter, 2008, 4, 2207.	2.7	28
122	Dilute gels with exceptional rigidity from self-assembling silk-collagen-like block copolymers. Soft Matter, 2009, 5, 4191.	2.7	27
123	Adenosine 5′-triphosphate (ATP) supplements are not orally bioavailable: a randomized, placebo-controlled cross-over trial in healthy humans. Journal of the International Society of Sports Nutrition, 2012, 9, 16.	3.9	27
124	Electrostatic hierarchical co-assembly in aqueous solutions of two oppositely charged double hydrophilic diblock copolymers. European Polymer Journal, 2009, 45, 2913-2925.	5.4	26
125	Complex Coacervate Core Micelles with a Lysozyme-Modified Corona. Langmuir, 2007, 23, 8003-8009.	3.5	25
126	Stabilization of Polymersome Vesicles by an Interpenetrating Polymer Network. Macromolecules, 2007, 40, 329-333.	4.8	25

#	Article	IF	CITATIONS
127	Self-Consistent Field Modeling of Poly(ethylene oxide) Adsorption onto Silica:  The Multiple Roles of Electrolytes. Langmuir, 2008, 24, 1930-1942.	3.5	25
128	Ultradense Polymer Brushes by Adsorption. Angewandte Chemie - International Edition, 2009, 48, 5369-5371.	13.8	25
129	Pluronic polymersomes stabilized by core cross-linked polymer micelles. Soft Matter, 2009, 5, 4042.	2.7	25
130	Redox responsive molecular assemblies based on metallic coordination polymers. Soft Matter, 2010, 6, 3244.	2.7	25
131	Adsorption of a linear polyelectrolyte on a gold electrode. Physical Chemistry Chemical Physics, 2003, 5, 4258.	2.8	24
132	On the Transition between a Heterogeneous and Homogeneous Corona in Mixed Polymeric Micelles. Langmuir, 2008, 24, 12221-12227.	3.5	24
133	Gentle Immobilization of Nonionic Polymersomes on Solid Substrates. Langmuir, 2008, 24, 76-82.	3.5	24
134	Colloidal interactions in liquid CO2 — A dry-cleaning perspective. Advances in Colloid and Interface Science, 2012, 175, 11-24.	14.7	24
135	Two modes of phase inversion in a drying emulsion. Soft Matter, 2013, 9, 2810.	2.7	24
136	Charge-driven and reversible assembly of ultra-dense polymer brushes: formation and antifouling properties of a zipper brush. Soft Matter, 2010, 6, 2499.	2.7	23
137	Fluorescence enhancement by microphase separation-induced chain extension of Eu3+ coordination polymers: phenomenon and analysis. Soft Matter, 2011, 7, 2720.	2.7	23
138	Promoted formation of coordination polyelectrolytes by layer-by-layer assembly. Soft Matter, 2011, 7, 3565.	2.7	23
139	Fibril Formation by pH and Temperature Responsive Silk-Elastin Block Copolymers. Biomacromolecules, 2013, 14, 48-55.	5.4	23
140	Subtle Charge Balance Controls Surface-Nucleated Self-Assembly of Designed Biopolymers. ACS Nano, 2014, 8, 2328-2335.	14.6	23
141	Reversible Binding of Multivalent Ions by Surfactant Self-Assembly. Journal of the American Chemical Society, 2005, 127, 1594-1595.	13.7	22
142	Capillary Adhesion in the Limit of Saturation:  Thermodynamics, Self-Consistent Field Modeling and Experiment. Langmuir, 2008, 24, 1308-1317.	3.5	22
143	Effect of pH on Complex Coacervate Core Micelles from Fe(III)-Based Coordination Polymer. Langmuir, 2011, 27, 14776-14782.	3.5	22
144	Illuminating the Reaction Pathways of Viromimetic Assembly. Journal of the American Chemical Society, 2017, 139, 4962-4968.	13.7	22

#	Article	IF	CITATIONS
145	Physical Gels Based on Charge-Driven Bridging of Nanoparticles by Triblock Copolymers. Langmuir, 2012, 28, 12311-12318.	3.5	21
146	Liquid Crystals of Self-Assembled DNA Bottlebrushes. Journal of Physical Chemistry B, 2015, 119, 4084-4092.	2.6	21
147	Manipulating and quantifying temperature-triggered coalescence with microcentrifugation. Lab on A Chip, 2015, 15, 188-194.	6.0	21
148	The Production of PEO Polymer Brushes via Langmuirâ´'Blodgett and Langmuirâ^'Schaeffer Methods: Incomplete Transfer and Its Consequences. Langmuir, 2009, 25, 4490-4497.	3.5	20
149	Complex coacervate core micelles as diffusional nanoprobes. Soft Matter, 2014, 10, 320-331.	2.7	20
150	Effect of Aromatic and Aliphatic Pendants in Poly(maleic acid amide- <i>co</i> -vinyl acetate) on Asphaltene Precipitation in Heavy Oil. Industrial & Engineering Chemistry Research, 2018, 57, 10701-10708.	3.7	20
151	Small monodisperse unilamellar vesicles from binary copolymer mixtures. Soft Matter, 2009, 5, 4169.	2.7	19
152	Effect of Surface Roughness and Softness on Water Capillary Adhesion in Apolar Media. Journal of Physical Chemistry A, 2012, 116, 6481-6488.	2.5	19
153	Dock â€~n roll: folding of a silk-inspired polypeptide into an amyloid-like beta solenoid. Soft Matter, 2016, 12, 3721-3729.	2.7	19
154	Fibrous Hydrogels for Cell Encapsulation: A Modular and Supramolecular Approach. PLoS ONE, 2016, 11, e0155625.	2.5	19
155	Efficient and Generic Preparation of Diverse Polyelectrolyte Nanogels by Electrostatic Assembly Directed Polymerization. CCS Chemistry, 2020, 2, 1016-1025.	7.8	19
156	Adsorption of cationic starches on microcrystalline cellulose. Nordic Pulp and Paper Research Journal, 1993, 8, 34-40.	0.7	19
157	Phase behavior of mixtures of oppositely charged protein nanoparticles at asymmetric charge ratios. Physical Review E, 2006, 73, 041408.	2.1	18
158	Polypeptide Nanoribbon Hydrogels Assembled through Multiple Supramolecular Interactions. Langmuir, 2009, 25, 12899-12908.	3.5	18
159	Heat-induced formation of ordered structures of ovalbumin at low ionic strength studied by small angle X-ray scattering. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 270-271, 301-308.	4.7	17
160	Probing Nanoscale Coassembly with Dual Mechanochromic Sensors. Advanced Functional Materials, 2016, 26, 1420-1427.	14.9	17
161	Hierarchical Assemblies of Dendrimers Embedded in Networks of Lanthanide-Based Supramolecular Polyelectrolytes. Macromolecules, 2019, 52, 1874-1881.	4.8	17
162	Capacity-controllable nanocarriers for metal ions. Soft Matter, 2009, 5, 790-796.	2.7	16

#	Article	IF	CITATIONS
163	Thermally sensitive dual fluorescent polymeric micelles for probing cell properties. Soft Matter, 2011, 7, 11211.	2.7	16
164	Relaxation Phenomena During Polyelectrolyte Complex Formation. Advances in Polymer Science, 2012, , 139-172.	0.8	16
165	Controlled block copolymer micelle formation for encapsulation of hydrophobic ingredients. European Physical Journal E, 2013, 36, 107.	1.6	16
166	Pressure Effect on the Rheological Behavior of Waxy Crude Oil with Comb-Type Copolymers Bearing Azobenzene Pendant. Industrial & Engineering Chemistry Research, 2018, 57, 4887-4894.	3.7	16
167	Navigating in foldonia: Using accelerated molecular dynamics to explore stability, unfolding and self-healing of the β-solenoid structure formed by a silk-like polypeptide. PLoS Computational Biology, 2017, 13, e1005446.	3.2	16
168	Intermittent dynamics in transient polymer networks under shear: Signs of self-organized criticality. Physical Review E, 2009, 79, 056306.	2.1	15
169	Triggered Templated Assembly of Protein Polymersomes. Angewandte Chemie - International Edition, 2010, 49, 9947-9950.	13.8	15
170	A Case of Adaptive Self-Assembly. ACS Nano, 2012, 6, 1004-1010.	14.6	15
171	Interfacial Tension and Wettability in Water–Carbon Dioxide Systems: Experiments and Self-consistent Field Modeling. Journal of Physical Chemistry B, 2013, 117, 8524-8535.	2.6	15
172	Nanofibrillar hydrogel scaffolds from recombinant proteinâ€based polymers with integrin―and proteoglycanâ€binding domains. Journal of Biomedical Materials Research - Part A, 2016, 104, 3082-3092.	4.0	15
173	Controlling Morphology and Release Behavior of Sorafenib-Loaded Nanocarriers Prepared by Flash Nanoprecipitation. Industrial & Engineering Chemistry Research, 2018, 57, 11911-11919.	3.7	15
174	Spherical Poly(vinyl imidazole) Brushes Loading Nickel Cations as Nanocatalysts for Aquathermolysis of Heavy Crude Oil. Energy & Fuels, 2019, 33, 998-1006.	5.1	15
175	One-Pot Syntheses of Porous Hollow Silica Nanoreactors Encapsulating Rare Earth Oxide Nanoparticles for Methylene Blue Degradation. Industrial & Engineering Chemistry Research, 2019, 58, 3726-3734.	3.7	15
176	Self-Consistent Field Modeling of Adsorption from Polymer/Surfactant Mixtures. Langmuir, 2008, 24, 6712-6720.	3.5	14
177	Kinetics of network formation by telechelic polypeptides with trimeric nodes. Soft Matter, 2010, 6, 416-422.	2.7	14
178	Heparin as a Bundler in a Self-Assembled Fibrous Network of Functionalized Protein-Based Polymers. Biomacromolecules, 2016, 17, 2063-2072.	5.4	14
179	A clear coat from a water soluble precursor: a bioinspired paint concept. Journal of Materials Chemistry A, 2016, 4, 6868-6877.	10.3	14
180	Formation of nanotapes by co-assembly of triblock peptide copolymers and polythiophenes in aqueous solution. Soft Matter, 2009, 5, 1668.	2.7	13

#	Article	IF	CITATIONS
181	Field theoretical modeling of the coexistence of micelles and vesicles in binary copolymer mixtures. Soft Matter, 2009, 5, 4173.	2.7	13
182	Supramolecular Virus‣ike Nanorods by Coassembly of a Triblock Polypeptide and Reversible Coordination Polymers. Chemistry - A European Journal, 2017, 23, 239-243.	3.3	13
183	Self-Consistent Field Modeling of Non-ionic Surfactants at the Silicaâ^'Water Interface:  Incorporating Molecular Detail. Langmuir, 2008, 24, 3960-3969.	3.5	12
184	Self-consistent field predictions for quenched spherical biocompatible triblock copolymer micelles. Soft Matter, 2013, 9, 7515.	2.7	12
185	Force and Scale Dependence of the Elasticity of Self-Assembled DNA Bottle Brushes. Macromolecules, 2018, 51, 204-212.	4.8	12
186	Efficient Synthesis of Stable Polyelectrolyte Complex Nanoparticles by Electrostatic Assembly Directed Polymerization. Macromolecular Rapid Communications, 2021, 42, 2000635.	3.9	12
187	Environment-sensitive stabilisation of silver nanoparticles in aqueous solutions. Journal of Colloid and Interface Science, 2009, 339, 317-324.	9.4	11
188	Grafted block complex coacervate core micelles and their effect on protein adsorption on silica and polystyrene. Colloid and Polymer Science, 2010, 288, 1081-1095.	2.1	11
189	From Coordination Polymers to Hierarchical Self-Assembled Structures. Advances in Polymer Science, 2010, , 91-115.	0.8	11
190	Dynamics of polymer bridge formation and disruption. Physical Review E, 2008, 78, 040802.	2.1	10
191	Controlled synthesis of PEGylated polyelectrolyte nanogels as efficient protein carriers. Journal of Colloid and Interface Science, 2022, 620, 322-332.	9.4	10
192	Grafted ionomer complexes and their effect on protein adsorption on silica and polysulfone surfaces. Colloid and Polymer Science, 2010, 288, 1621-1632.	2.1	9
193	Pearl-necklace complexes of flexible polyanions with neutral–cationic diblock copolymers. Soft Matter, 2013, 9, 6406.	2.7	9
194	Equivalent Pathways in Melting and Gelation of Well-Defined Biopolymer Networks. Biomacromolecules, 2015, 16, 304-310.	5.4	9
195	Loss of bottlebrush stiffness due to free polymers. Soft Matter, 2016, 12, 8004-8014.	2.7	9
196	Supramolecular crosslinks enable PIC micelles with tuneable salt stability and diverse properties. Soft Matter, 2019, 15, 8210-8218.	2.7	9
197	Effects of pH on the Formation of PIC Micelles from PAMAM Dendrimers. Langmuir, 2020, 36, 8367-8374.	3.5	9
198	Optimal synthesis of polyelectrolyte nanogels by electrostatic assembly directed polymerization for dye loading and release. Soft Matter, 2021, 17, 887-892.	2.7	9

#	Article	IF	CITATIONS
199	Regulated Polyelectrolyte Nanogels for Enzyme Encapsulation and Activation. Biomacromolecules, 2021, 22, 4748-4757.	5.4	9
200	Disulfide bond-stabilized physical gels of an asymmetric collagen-inspired telechelic protein polymer. Soft Matter, 2013, 9, 6391.	2.7	8
201	Templateâ€Free Selfâ€Assembly of Artificial De Novo Viral Coat Proteins into Nanorods: Effects of Sequence, Concentration, and Temperature. Chemistry - A European Journal, 2019, 25, 11058-11065.	3.3	8
202	Dendrimicelles with pH-controlled aggregation number of core-dendrimers and stability. Soft Matter, 2020, 16, 7893-7897.	2.7	8
203	Controlled Synthesis of Manganese Oxide Nanoparticles Encaged in Hollow Mesoporous Silica Nanoreactors and Their Enhanced Dye Degradation Activity. ACS Omega, 2020, 5, 6852-6861.	3.5	8
204	Synthesis of Anionic Nanogels for Selective and Efficient Enzyme Encapsulation. Langmuir, 2022, 38, 3234-3243.	3.5	8
205	Comprehensive theory for star-like polymer micelles; combining classical nucleation and polymer brush theory. Physical Chemistry Chemical Physics, 2008, 10, 5308.	2.8	7
206	Towards detergency in liquid CO2 – A surfactant formulation for particle release in an apolar medium. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415, 1-9.	4.7	7
207	Competition between surface adsorption and folding of fibril-forming polypeptides. Physical Review E, 2015, 91, 022711.	2.1	7
208	One-Pot Synthesis of Small and Uniform Gold Nanoparticles in Water by Flash Nanoprecipitation. Industrial & Engineering Chemistry Research, 2020, 59, 11080-11086.	3.7	7
209	Response of metal-coordination-based polyelectrolyte complex micelles to added ligands and metals. Soft Matter, 2020, 16, 2953-2960.	2.7	7
210	Switchable Electrostatically Templated Polymerization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	7
211	Hierarchical polyion complex vesicles from PAMAM dendrimers. Journal of Colloid and Interface Science, 2022, 606, 307-316.	9.4	6
212	Rational Polyelectrolyte Design Enables Multifunctional Polyion Complex Vesicles. ACS Applied Materials & Interfaces, 2022, 14, 6048-6056.	8.0	6
213	Flash nanoprecipitation enables regulated formulation of soybean protein isolate nanoparticles. Food Hydrocolloids, 2022, 131, 107798.	10.7	6
214	Monte Carlo Study of Supramolecular Polymer Fractionation:Â Selective Removal of Chain Stoppers by Phase Separation. Journal of Physical Chemistry B, 2006, 110, 18629-18634.	2.6	5
215	Mobility of fluorescently labeled polymer micelles in living cells. Soft Matter, 2011, 7, 1214-1218.	2.7	5
216	(Quasi-) 2D Aggregation of Polystyrene-b-Dextran at the Air–Water Interface. Langmuir, 2013, 29, 2667-2675.	3.5	5

#	Article	IF	CITATIONS
217	Facile Preparation of Tilmicosin-Loaded Polymeric Nanoparticle with Controlled Properties and Functions. ACS Omega, 2020, 5, 32366-32372.	3.5	5
218	Complex supramolecular fiber formed by coordination-induced self-assembly of benzene-1,3,5-tricarboxamide (BTA). Journal of Colloid and Interface Science, 2022, 608, 1297-1307.	9.4	5
219	Regulated Polyion Complex Vesicles for Efficient Photothermal Therapy. Advanced Functional Materials, 0, , 2108729.	14.9	5
220	Nanowires Formed by the Coâ€Assembly of a Negatively Charged Lowâ€Molecular Weight Gelator and a Zwitterionic Polythiophene. ChemPhysChem, 2010, 11, 1956-1960.	2.1	4
221	Co-assembly Towards Janus Micelles. Advances in Polymer Science, 2010, , 163-185.	0.8	4
222	Pathway-dependent properties of a multi-stimuli sensitive biosynthetic hybrid network. Soft Matter, 2013, 9, 8737.	2.7	4
223	Reversible polypeptide hydrogels from asymmetric telechelics with temperature-dependent and Ni ²⁺ -dependent connectors. Soft Matter, 2016, 12, 4979-4984.	2.7	4
224	Design of block-copolymer-based micelles for active and passive targeting. Physical Review E, 2016, 94, 042503.	2.1	4
225	Europium based coordination polyelectrolytes enable core–shell–corona micelles as luminescent probes. Soft Matter, 2020, 16, 5727-5733.	2.7	4
226	Supramolecular virus-like particles by co-assembly of triblock polypolypeptide and PAMAM dendrimers. Soft Matter, 2021, 17, 5044-5049.	2.7	4
227	Self-consistent-field calculations of proteinlike incorporations in polyelectrolyte complex micelles. Physical Review E, 2009, 80, 051406.	2.1	3
228	Trigger sequence can influence final morphology in the self-assembly of asymmetric telechelic polymers. Soft Matter, 2016, 12, 2095-2107.	2.7	3
229	Facile controlling internal structure of β-carotene-loaded protein nanoparticles by Flash Nanoprecipitation. Materials Letters, 2021, 304, 130523.	2.6	3
230	Dendrimerâ€Based Polyion Complex Vesicles: Loops Make Loose. Macromolecular Rapid Communications, 2022, 43, e2100594.	3.9	3
231	Adhesive liquidâ€crystalline polymers. Macromolecular Symposia, 1998, 127, 115-121.	0.7	2
232	A liquid CO2-compatible hydrocarbon surfactant: experiment and modelling. Physical Chemistry Chemical Physics, 2013, 15, 19879.	2.8	2
233	Nanoparticle-Templated Formation and Growth Mechanism of Curved Protein Polymer Fibrils. Biomacromolecules, 2016, 17, 2392-2398.	5.4	2
234	Physical and mechanical properties of thermosensitive xanthan/collagen-inspired protein composite hydrogels. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 125-133.	3.4	2

#	Article	IF	CITATIONS
235	Electrostatic stiffening and induced persistence length for coassembled molecular bottlebrushes. Physical Review E, 2018, 97, 032501.	2.1	2
236	Ternary Fluid Mixture Confined between Surfaces: Surface-induced Phase Transition and Long-range Oscillatory Forces. Chemistry Letters, 2012, 41, 1113-1115.	1.3	0
237	Regulated preparation of celastrol-loaded nanoparticle by flash nanoprecipitation. Journal of Drug Delivery Science and Technology, 2022, 69, 103146.	3.0	0