
David C Rubinsztein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1196/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased <i>SORBS3</i> expression in brain ageing contributes to autophagic decline via YAP1-WWTR1/TAZ signaling. Autophagy, 2023, 19, 943-944.	9.1	1
2	TMED9–SEC12, an important "contact―for autophagy. Cell Research, 2022, 32, 111-112.	12.0	1
3	Vinexin contributes to autophagic decline in brain ageing across species. Cell Death and Differentiation, 2022, 29, 1055-1070.	11.2	7
4	The complexity of biological control systems: An autophagy case study. BioEssays, 2022, 44, e2100224.	2.5	4
5	The different autophagy degradation pathways and neurodegeneration. Neuron, 2022, 110, 935-966.	8.1	150
6	A New Zebrafish Model to Measure Neuronal α-Synuclein Clearance In Vivo. Genes, 2022, 13, 868.	2.4	6
7	Compounds activating VCP D1 ATPase enhance both autophagic and proteasomal neurotoxic protein clearance. Nature Communications, 2022, 13, .	12.8	11
8	VCP/p97 regulates Beclin-1-dependent autophagy initiation. Nature Chemical Biology, 2021, 17, 448-455.	8.0	61
9	Autophagy regulation by acetylation—implications for neurodegenerative diseases. Experimental and Molecular Medicine, 2021, 53, 30-41.	7.7	27
10	VCP/p97 modulates PtdIns3P production and autophagy initiation. Autophagy, 2021, 17, 1052-1053.	9.1	2
11	α-Catenin levels determine direction of YAP/TAZ response to autophagy perturbation. Nature Communications, 2021, 12, 1703.	12.8	17
12	Lysosome positioning and mTOR activity in Lowe syndrome. EMBO Reports, 2021, 22, e53232.	4.5	3
13	Cell type-specific YAP1-WWTR1/TAZ transcriptional responses after autophagy perturbations are determined by levels of α-catenins (CTNNA1 and CTNNA3). Autophagy, 2021, 17, 1788-1790.	9.1	4
14	Transient siRNA-mediated protein knockdown in mouse followed by feeding/starving cycle and liver tissue analysis. STAR Protocols, 2021, 2, 100500.	1.2	4
15	Glucose starvation induces autophagy via ULK1-mediated activation of PIKfyve in an AMPK-dependent manner. Developmental Cell, 2021, 56, 1961-1975.e5.	7.0	39
16	Autophagy in major human diseases. EMBO Journal, 2021, 40, e108863.	7.8	615
17	AMPK-activated ULK1 phosphorylates PIKFYVE to drive formation of PtdIns5P-containing autophagosomes during glucose starvation. Autophagy, 2021, 17, 3877-3878.	9.1	7
18	Autophagy in healthy aging and disease. Nature Aging, 2021, 1, 634-650.	11.6	467

#	Article	IF	CITATIONS
19	Breakthroughs and bottlenecks in autophagy research. Trends in Molecular Medicine, 2021, 27, 835-838.	6.7	20
20	The pleiotropic roles of autophagy in Alzheimer's disease: From pathophysiology to therapy. Current Opinion in Pharmacology, 2021, 60, 149-157.	3.5	20
21	Protocol for determining the regulation of lipid kinases and changes in phospholipids in vitro. STAR Protocols, 2021, 2, 100926.	1.2	0
22	Autophagy Induction as a Therapeutic Strategy for Neurodegenerative Diseases. Journal of Molecular Biology, 2020, 432, 2799-2821.	4.2	157
23	Developing Therapies for Neurodegenerative Disorders: Insights from Protein Aggregation and Cellular Stress Responses. Annual Review of Cell and Developmental Biology, 2020, 36, 165-189.	9.4	35
24	Huntingtin-lowering strategies for Huntington's disease. Expert Opinion on Investigational Drugs, 2020, 29, 1125-1132.	4.1	23
25	Autophagy in Neuronal Development and Plasticity. Trends in Neurosciences, 2020, 43, 767-779.	8.6	50
26	Deadly Encounter: Endosomes Meet Mitochondria to Initiate Apoptosis. Developmental Cell, 2020, 53, 619-620.	7.0	2
27	Leucine regulates autophagy via acetylation of the mTORC1 component raptor. Nature Communications, 2020, 11, 3148.	12.8	68
28	cGMP via PKG activates 26S proteasomes and enhances degradation of proteins, including ones that cause neurodegenerative diseases. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14220-14230.	7.1	57
29	IFNB/interferon-β regulates autophagy via a <i>MIR1</i> -TBC1D15-RAB7 pathway. Autophagy, 2020, 16, 767-769.	9.1	13
30	A DNM2 Centronuclear Myopathy Mutation Reveals a Link between Recycling Endosome Scission and Autophagy. Developmental Cell, 2020, 53, 154-168.e6.	7.0	30
31	mTORC2 Assembly Is Regulated by USP9X-Mediated Deubiquitination of RICTOR. Cell Reports, 2020, 33, 108564.	6.4	15
32	ULK1â€mediated phosphorylation of ATG16L1 promotes xenophagy, but destabilizes the ATG16L1 Crohn's mutant. EMBO Reports, 2019, 20, e46885.	4.5	37
33	Felodipine induces autophagy in mouse brains with pharmacokinetics amenable to repurposing. Nature Communications, 2019, 10, 1817.	12.8	88
34	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	21.4	1,962
35	New factors for protein transport identified by a genome-wide CRISPRi screen in mammalian cells. Journal of Cell Biology, 2019, 218, 3861-3879.	5.2	25
36	Leucine Signals to mTORC1 via Its Metabolite Acetyl-Coenzyme A. Cell Metabolism, 2019, 29, 192-201.e7.	16.2	159

#	Article	IF	CITATIONS
37	Autophagy in childhood neurological disorders. Developmental Medicine and Child Neurology, 2019, 61, 639-645.	2.1	8
38	Post-translational modifications of Beclin 1 provide multiple strategies for autophagy regulation. Cell Death and Differentiation, 2019, 26, 617-629.	11.2	153
39	Genetic enhancement of macroautophagy in vertebrate models of neurodegenerative diseases. Neurobiology of Disease, 2019, 122, 3-8.	4.4	15
40	Coincidence detection of RAB11A and PI(3)P by WIPI2 directs autophagosome formation. Oncotarget, 2019, 10, 2579-2580.	1.8	5
41	Autophagy, Cellular Aging and Age-related Human Diseases. Experimental Neurobiology, 2019, 28, 643-657.	1.6	54
42	Interferon-Î ² -induced miR-1 alleviates toxic protein accumulation by controlling autophagy. ELife, 2019, 8, .	6.0	23
43	A genetic modifier suggests that endurance exercise exacerbates Huntington's disease. Human Molecular Genetics, 2018, 27, 1723-1731.	2.9	17
44	The RAB11A-Positive Compartment Is a Primary Platform for Autophagosome Assembly Mediated by WIPI2 Recognition of PI3P-RAB11A. Developmental Cell, 2018, 45, 114-131.e8.	7.0	147
45	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
46	Seeing is believing: methods to monitor vertebrate autophagy <i>in vivo</i> . Open Biology, 2018, 8, .	3.6	32
47	Assessing Autophagic Activity and Aggregate Formation of Mutant Huntingtin in Mammalian Cells. Methods in Molecular Biology, 2018, 1780, 17-29.	0.9	0
48	Phagophores evolve from recycling endosomes. Autophagy, 2018, 14, 1475-1477.	9.1	24
49	Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence: supporting the next generation of autophagy researchers and fostering international collaborations. Autophagy, 2018, 14, 925-929.	9.1	3
50	Transbilayer phospholipid movement facilitates annexin translocation across membranes. Journal of Cell Science, 2018, 131, .	2.0	16
51	Contact inhibition controls cell survival and proliferation via YAP/TAZ-autophagy axis. Nature Communications, 2018, 9, 2961.	12.8	193
52	Autophagy as a promoter of longevity: insights from model organisms. Nature Reviews Molecular Cell Biology, 2018, 19, 579-593.	37.0	513
53	Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nature Reviews Drug Discovery, 2018, 17, 660-688.	46.4	370
54	Attenuation of autophagy impacts on muscle fibre development, starvation induced stress and fibre regeneration following acute injury. Scientific Reports, 2018, 8, 9062.	3.3	33

#	Article	IF	CITATIONS
55	Neurodegenerative Diseases and Autophagy. , 2018, , 299-343.		1
56	Autophagy and Neurodegeneration: Pathogenic Mechanisms and Therapeutic Opportunities. Neuron, 2017, 93, 1015-1034.	8.1	860
57	Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature, 2017, 545, 108-111.	27.8	288
58	Molecular definitions of autophagy and related processes. EMBO Journal, 2017, 36, 1811-1836.	7.8	1,230
59	Macroautophagy without LC3 conjugation?. Cell Research, 2017, 27, 5-6.	12.0	3
60	Huntington's Disease: Mechanisms of Pathogenesis and Therapeutic Strategies. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a024240.	6.2	265
61	An open-label study to assess the feasibility and tolerability of rilmenidine for the treatment of Huntington's disease. Journal of Neurology, 2017, 264, 2457-2463.	3.6	21
62	RIPK1 promotes inflammation and β-amyloid accumulation in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10813-10814.	7.1	16
63	Polyglutamine tracts regulate autophagy. Autophagy, 2017, 13, 1613-1614.	9.1	23
64	Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	21.4	783
65	Mammalian autophagy and the plasma membrane. FEBS Journal, 2017, 284, 672-679.	4.7	57
66	A152T tau allele causes neurodegeneration that can be ameliorated in a zebrafish model by autophagy induction. Brain, 2017, 140, 1128-1146.	7.6	84
67	Autophagy impairment in Parkinson's disease. Essays in Biochemistry, 2017, 61, 711-720.	4.7	125
68	CCT complex restricts neuropathogenic protein aggregation via autophagy. Nature Communications, 2016, 7, 13821.	12.8	107
69	Diminishing return for mechanistic therapeutics with neurodegenerative disease duration?. BioEssays, 2016, 38, 977-980.	2.5	22
70	Transcriptional regulation of mammalian autophagy at a glance. Journal of Cell Science, 2016, 129, 3059-3066.	2.0	160
71	The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway. Nature Communications, 2016, 7, 11803.	12.8	154
72	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701

#	Article	IF	CITATIONS
73	Mystery solved: Trehalose kickstarts autophagy by blocking glucose transport. Science Signaling, 2016, 9, fs2.	3.6	79
74	Mammalian Autophagy: How Does It Work?. Annual Review of Biochemistry, 2016, 85, 685-713.	11.1	578
75	Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nature Communications, 2016, 7, 10533.	12.8	142
76	Tau toxicity feeds forward in frontotemporal dementia. Nature Medicine, 2016, 22, 24-25.	30.7	4
77	Functional drug screening reveals anticonvulsants as enhancers of mTORâ€independent autophagic killing of <i>Mycobacterium tuberculosis</i> through inositol depletion. EMBO Molecular Medicine, 2015, 7, 127-139.	6.9	137
78	Heterogeneous nuclear ribonucleoprotein A1 post-transcriptionally regulates Drp1 expression in neuroblastoma cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1423-1431.	1.9	31
79	Receptors for selective recycling. Nature, 2015, 522, 291-292.	27.8	17
80	PI(5)P Regulates Autophagosome Biogenesis. Molecular Cell, 2015, 57, 219-234.	9.7	230
81	Autophagy in malignant transformation and cancer progression. EMBO Journal, 2015, 34, 856-880.	7.8	1,012
82	Therapeutic targeting of autophagy in neurodegenerative and infectious diseases. Journal of Experimental Medicine, 2015, 212, 979-990.	8.5	176
83	XIAP and cIAP1 amplifications induce Beclin 1-dependent autophagy through NFκB activation. Human Molecular Genetics, 2015, 24, 2899-2913.	2.9	47
84	Methods to analyze SNARE-dependent vesicular fusion events that regulate autophagosome biogenesis. Methods, 2015, 75, 19-24.	3.8	10
85	Compromised autophagy and neurodegenerative diseases. Nature Reviews Neuroscience, 2015, 16, 345-357.	10.2	676
86	siRNA screen identifies QPCT as a druggable target for Huntington's disease. Nature Chemical Biology, 2015, 11, 347-354.	8.0	87
87	Lack of Neuronal IFN-β-IFNAR Causes Lewy Body- and Parkinson's Disease-like Dementia. Cell, 2015, 163, 324-339.	28.9	160
88	Transcriptional regulation of Annexin A2 promotes starvation-induced autophagy. Nature Communications, 2015, 6, 8045.	12.8	64
89	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.8	173
90	PICALM modulates autophagy activity and tau accumulation. Nature Communications, 2014, 5, 4998.	12.8	218

#	Article	IF	CITATIONS
91	Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy. Nature Communications, 2014, 5, 3828.	12.8	374
92	ATG16L1 meets ATG9 in recycling endosomes. Autophagy, 2014, 10, 182-184.	9.1	64
93	VPS35 Parkinson mutation impairs autophagy via WASH. Cell Cycle, 2014, 13, 2155-2156.	2.6	21
94	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	2.5	155
95	Reducing Igf-1r Levels Leads To Paradoxical and Sexually Dimorphic Effects in HD Mice. PLoS ONE, 2014, 9, e105595.	2.5	8
96	Diverse Autophagosome Membrane Sources Coalesce in Recycling Endosomes. Cell, 2013, 154, 1285-1299.	28.9	383
97	Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics, 2013, 45, 1452-1458.	21.4	3,741
98	Tau degradation: The ubiquitin–proteasome system versus the autophagy-lysosome system. Progress in Neurobiology, 2013, 105, 49-59.	5.7	280
99	IGF-1 receptor antagonism inhibits autophagy. Human Molecular Genetics, 2013, 22, 4528-4544.	2.9	76
100	Autophagy Upregulation as a Therapeutic Strategy for Neurodegenerative Diseases. , 2013, , 227-238.		4
101	Autophagy—alias selfâ€eating—appetite and ageing. EMBO Reports, 2012, 13, 173-174.	4.5	12
102	Autophagy modulation as a potential therapeutic target for diverse diseases. Nature Reviews Drug Discovery, 2012, 11, 709-730.	46.4	1,285
103	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
104	Mechanisms of Autophagosome Biogenesis. Current Biology, 2012, 22, R29-R34.	3.9	400
105	TFEB Links Autophagy to Lysosomal Biogenesis. Science, 2011, 332, 1429-1433.	12.6	2,513
106	Autophagy and Aging. Cell, 2011, 146, 682-695.	28.9	1,809
107	Complex Inhibitory Effects of Nitric Oxide on Autophagy. Molecular Cell, 2011, 43, 19-32.	9.7	340
108	Lysosomal positioning coordinates cellular nutrient responses. Nature Cell Biology, 2011, 13, 453-460.	10.3	726

#	Article	IF	CITATIONS
109	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	21.4	1,708
110	Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. Journal of Cell Science, 2011, 124, 469-482.	2.0	99
111	A comprehensive glossary of autophagy-related molecules and processes (2 nd edition). Autophagy, 2011, 7, 1273-1294.	9.1	255
112	Autophagy: where next?. EMBO Reports, 2010, 11, 3-3.	4.5	11
113	Rilmenidine attenuates toxicity of polyglutamine expansions in a mouse model of Huntington's disease. Human Molecular Genetics, 2010, 19, 2144-2153.	2.9	191
114	α-Synuclein impairs macroautophagy: implications for Parkinson's disease. Journal of Cell Biology, 2010, 190, 1023-1037.	5.2	687
115	Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain, 2010, 133, 93-104.	7.6	236
116	Deletion of the Huntingtin Polyglutamine Stretch Enhances Neuronal Autophagy and Longevity in Mice. PLoS Genetics, 2010, 6, e1000838.	3.5	140
117	Cdks Regulate Autophagy via Vps34. Molecular Cell, 2010, 38, 483-484.	9.7	7
118	Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Human Molecular Genetics, 2010, 19, 2867-2876.	2.9	170
119	Regulation of Mammalian Autophagy in Physiology and Pathophysiology. Physiological Reviews, 2010, 90, 1383-1435.	28.8	1,557
120	In search of an "autophagomometer― Autophagy, 2009, 5, 585-589.	9.1	503
121	Huntingtin promotes cell survival by preventing Pak2 cleavage. Journal of Cell Science, 2009, 122, 875-885.	2.0	34
122	Mammalian macroautophagy at a glance. Journal of Cell Science, 2009, 122, 1707-1711.	2.0	163
123	Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genetics, 2009, 41, 1088-1093.	21.4	2,697
124	Autophagy Inhibition Compromises Degradation of Ubiquitin-Proteasome Pathway Substrates. Molecular Cell, 2009, 33, 517-527.	9.7	580
125	Functional genomics approaches to neurodegenerative diseases. Mammalian Genome, 2008, 19, 587-590.	2.2	8
126	The Itinerary of Autophagosomes: From Peripheral Formation to Kissâ€andâ€Run Fusion with Lysosomes. Traffic, 2008, 9, 574-587.	2.7	364

#	Article	IF	CITATIONS
127	Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nature Chemical Biology, 2008, 4, 295-305.	8.0	739
128	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
129	p21-activated kinase 1 promotes soluble mutant huntingtin self-interaction and enhances toxicity. Human Molecular Genetics, 2008, 17, 895-905.	2.9	53
130	Does bafilomycin A ₁ block the fusion of autophagosomes with lysosomes?. Autophagy, 2008, 4, 849-850.	9.1	422
131	Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. Journal of Cell Science, 2008, 121, 1649-1660.	2.0	284
132	Spinocerebellar ataxias caused by polyglutamine expansions: A review of therapeutic strategies. Cerebellum, 2008, 7, 1-7.	2.5	0
133	Trehalose, a Novel mTOR-independent Autophagy Enhancer, Accelerates the Clearance of Mutant Huntingtin and α-Synuclein. Journal of Biological Chemistry, 2007, 282, 5641-5652.	3.4	971
134	Autophagy Induction Rescues Toxicity Mediated by Proteasome Inhibition. Neuron, 2007, 54, 854-856.	8.1	48
135	Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nature Chemical Biology, 2007, 3, 331-338.	8.0	572
136	Potential therapeutic applications of autophagy. Nature Reviews Drug Discovery, 2007, 6, 304-312.	46.4	901
137	Protein-protein interaction networks in the spinocerebellar ataxias. Genome Biology, 2006, 7, 229.	9.6	8
138	Paradoxical aggregation versus oligomerisation properties of mutant and wild-type huntingtin fragments. Experimental Neurology, 2006, 199, 243-244.	4.1	10
139	Palmitoylation of huntingtin by HIP14is essential for its trafficking and function. Nature Neuroscience, 2006, 9, 824-831.	14.8	266
140	The roles of intracellular protein-degradation pathways in neurodegeneration. Nature, 2006, 443, 780-786.	27.8	1,477
141	Rapamycin pre-treatment protects against apoptosis. Human Molecular Genetics, 2006, 15, 1209-1216.	2.9	376
142	Trehalose reduces aggregate formation and delays pathology in a transgenic mouse model of oculopharyngeal muscular dystrophy. Human Molecular Genetics, 2006, 15, 23-31.	2.9	191
143	Rapamycin alleviates toxicity of different aggregate-prone proteins. Human Molecular Genetics, 2006, 15, 433-442.	2.9	618
144	Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nature Genetics, 2005, 37, 771-776.	21.4	405

#	Article	IF	CITATIONS
145	Dyneins, Autophagy, Aggregation and Neurodegeneration. Autophagy, 2005, 1, 177-178.	9.1	58
146	Autophagy and Its Possible Roles in Nervous System Diseases, Damage and Repair. Autophagy, 2005, 1, 11-22.	9.1	422
147	Lithium induces autophagy by inhibiting inositol monophosphatase. Journal of Cell Biology, 2005, 170, 1101-1111.	5.2	868
148	Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genetics, 2004, 36, 585-595.	21.4	2,188
149	α-Synuclein Is Degraded by Both Autophagy and the Proteasome. Journal of Biological Chemistry, 2003, 278, 25009-25013.	3.4	1,246
150	Huntington's disease: molecular basis of neurodegeneration. Expert Reviews in Molecular Medicine, 2003, 5, 1-21.	3.9	117
151	How useful are animal models of human disease?. Seminars in Cell and Developmental Biology, 2003, 14, 1-2.	5.0	1
152	Raised intracellular glucose concentrations reduce aggregation and cell death caused by mutant huntingtin exon 1 by decreasing mTOR phosphorylation and inducing autophagy. Human Molecular Genetics, 2003, 12, 985-994.	2.9	103
153	How Does the Huntington's Disease Mutation Damage Cells?. Science of Aging Knowledge Environment: SAGE KE, 2003, 2003, 26pe-26.	0.8	16
154	Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Human Molecular Genetics, 2002, 11, 1137-1151.	2.9	428
155	Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Human Molecular Genetics, 2002, 11, 1107-1117.	2.9	971
156	Lessons from animal models of Huntington's disease. Trends in Genetics, 2002, 18, 202-209.	6.7	271
157	Alzheimer disease is not associated with polymorphisms in the angiotensinogen and renin genes. American Journal of Medical Genetics Part A, 2001, 105, 761-764.	2.4	16
158	α-Synuclein overexpression promotes aggregation of mutant huntingtin. Biochemical Journal, 2000, 346, 577-581.	3.7	78
159	Intracellular green fluorescent protein–polyalanine aggregates are associated with cell death. Biochemical Journal, 2000, 348, 15-19.	3.7	45
160	Genetic associations with clinical characteristics in bipolar affective disorder and recurrent unipolar depressive disorder. American Journal of Medical Genetics Part A, 2000, 96, 36-42.	2.4	82
161	No association of an insertion/deletion polymorphism in the angiotensin I converting enzyme gene with bipolar or unipolar affective disorders. American Journal of Medical Genetics Part A, 2000, 96, 733-735.	2.4	37
162	Genetic associations with clinical characteristics in bipolar affective disorder and recurrent unipolar depressive disorder. American Journal of Medical Genetics Part A, 2000, 96, 36.	2.4	2

#	Article	IF	CITATIONS
163	α-2 macroglobulin polymorphism and Alzheimer disease risk in the UK. Nature Genetics, 1999, 22, 16-17.	21.4	93
164	Analysis and metaanalysis of two polymorphisms within the tyrosine hydroxylase gene in bipolar and unipolar affective disorders. American Journal of Medical Genetics Part A, 1999, 88, 88-94.	2.4	49
165	Analysis of the monoamine oxidase A (MAOA) gene in bipolar affective disorder by association studies, meta-analyses, and sequencing of the promoter. American Journal of Medical Genetics Part A, 1999, 88, 398-406.	2.4	93
166	Analysis and metaanalysis of two polymorphisms within the tyrosine hydroxylase gene in bipolar and unipolar affective disorders. , 1999, 88, 88.		1
167	Analysis of the monoamine oxidase A (MAOA) gene in bipolar affective disorder by association studies, metaâ€analyses, and sequencing of the promoter. American Journal of Medical Genetics Part A, 1999, 88, 398-406.	2.4	1
168	Analysis and meta-analysis of two serotonin transporter gene polymorphisms in bipolar and unipolar affective disorders. American Journal of Medical Genetics Part A, 1998, 81, 58-63.	2.4	235
169	No association of the tryptophan hydroxylase gene with bipolar affective disorder, unipolar affective disorder, or suicidal behaviour in major affective disorder. American Journal of Medical Genetics Part A, 1998, 81, 245-247.	2.4	63
170	No association of a functional polymorphism in the dopamine D2 receptor promoter region with bipolar or unipolar affective disorders. , 1998, 81, 385-387.		31
171	Analysis and metaâ€analysis of two serotonin transporter gene polymorphisms in bipolar and unipolar affective disorders. American Journal of Medical Genetics Part A, 1998, 81, 58-63.	2.4	8
172	No association of the tryptophan hydroxylase gene with bipolar affective disorder, unipolar affective disorder, or suicidal behaviour in major affective disorder. American Journal of Medical Genetics Part A, 1998, 81, 245-247.	2.4	4
173	No association of a functional polymorphism in the dopamine D2 receptor promoter region with bipolar or unipolar affective disorders. American Journal of Medical Genetics Part A, 1998, 81, 385-387.	2.4	2
174	Analysis of alpha-1 antichymotrypsin, presenilin-1, angiotensin-converting enzyme, and methylenetetrahydrofolate reductase loci as candidates for dementia. , 1997, 74, 207-212.		45