Debasish Kuila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11959966/publications.pdf

Version: 2024-02-01

37	982	17 h-index	29
papers	citations		g-index
38	38	38	1191
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Scale-up of high-pressure F-T synthesis in 3D printed stainless steel microchannel microreactors: Experiments and modeling. Catalysis Today, 2022, 397-399, 182-196.	4.4	9
2	Atomic Layer Deposition of Cobalt Catalyst for Fischer–Tropsch Synthesis in Silicon Microchannel Microreactor. Nanomaterials, 2022, 12, 2425.	4.1	4
3	Metal-incorporated mesoporous oxides: Synthesis and applications. Journal of Hazardous Materials, 2021, 401, 123348.	12.4	19
4	Fischer-Tropsch Synthesis in Silicon and 3D Printed Stainless Steel Microchannel Microreactors. , 2021, , 429-457.		3
5	Steam reforming of methanol, ethanol and glycerol over nickel-based catalysts-A review. International Journal of Hydrogen Energy, 2020, 45, 18090-18113.	7.1	123
6	Fischer-Tropsch studies in a 3D-printed stainless steel microchannel microreactor coated with cobalt-based bimetallic-MCM-41 catalysts. Catalysis Today, 2020, 358, 303-315.	4.4	22
7	Effect of titania support on Fischer-Tropsch synthesis using cobalt, iron, and ruthenium catalysts in silicon-microchannel microreactor. Molecular Catalysis, 2019, 478, 110566.	2.0	21
8	Kinetics of Fischer–Tropsch Synthesis in a 3-D Printed Stainless Steel Microreactor Using Different Mesoporous Silica Supported Co-Ru Catalysts. Catalysts, 2019, 9, 872.	3 . 5	24
9	Effects of Mesoporous Supports and Metals on Steam Reforming of Alcohols. , 2019, , 93-108.		O
10	Growth and Functionality of Cells Cultured on Conducting and Semi-Conducting Surfaces Modified with Self-Assembled Monolayers (SAMs). Coatings, 2016, 6, 9.	2.6	2
11	Comparative performance of M-MCM-41 (M: Cu, Co, Ni, Pd, Zn and Sn) catalysts for steam reforming of methanol. Journal of Molecular Catalysis A, 2016, 425, 10-20.	4.8	102
12	Immobilized Growth Factor and peptide on indium tin oxide (ITO) scaffold for long-term hepatocyte culture towards developing a hepatotoxicity bioreactor. , 2016 , , .		0
13	Porous silicon substrates support osteogenic differentiation of mesenchymal stem cells. , 2016, , .		O
14	Synthesis of stable Cu-MCM-41 nanocatalysts for H2 production with high selectivity via steam reforming of methanol. International Journal of Hydrogen Energy, 2015, 40, 10439-10452.	7.1	82
15	Mesoporous nanocrystalline TiO2 supported metal (Cu, Co, Ni, Pd, Zn, and Sn) catalysts: Effect of metal-support interactions on steam reforming of methanol. Journal of Molecular Catalysis A, 2015, 408, 202-213.	4.8	158
16	Comparative Studies of Silica-Encapsulated Iron, Cobalt, and Ruthenium Nanocatalysts for Fischer–Tropsch Synthesis in Silicon-Microchannel Microreactors. Industrial & Engineering Chemistry Research, 2014, 53, 16245-16253.	3.7	23
17	Development of Mesoporous Silica Encapsulated Pd-Ni Nanocatalyst for Hydrogen Production. ACS Symposium Series, 2011, , 177-190.	0.5	4
18	Molecular Rectifying Diodes Based on an Aluminum/4′-Hydroxy-4-biphenyl Carboxylic Acid/p ⁺ -Silicon Junction. Journal of Physical Chemistry C, 2010, 114, 20877-20884.	3.1	12

#	Article	lF	CITATIONS
19	INVESTIGATION OF A NOVEL MICROREACTOR FOR ENHANCING MIXING AND CONVERSION. Chemical Engineering Communications, 2008, 195, 745-757.	2.6	18
20	Microreactors for Syngas Conversion to Higher Alkanes:  Effect of Ruthenium on Silica-Supported Ironâ^'Cobalt Nanocatalysts. Industrial & Engineering Chemistry Research, 2008, 47, 1684-1688.	3.7	17
21	Synthesis and Characterization of Bimetallic Pd-Co Nano Magnetic Materials in Mesoporous Silica. Materials Research Society Symposia Proceedings, 2008, 1118, 9.	0.1	0
22	Synthesis and characterization of non-noble nanocatalysts for hydrogen production in microreactors. Journal of Power Sources, 2007, 163, 630-636.	7.8	14
23	Fabrication and characterization of an indium tin oxide-octadecanethiol-aluminum junction for molecular electronics. Applied Physics Letters, 2006, 88, 233104.	3.3	14
24	Silica Sol-Gel Supported Nickel Nano-Catalyst for Hydrogen Production Using Microreactors. Materials Research Society Symposia Proceedings, 2005, 885, 1.	0.1	0
25	Microreactors for Syngas Conversion to Higher Alkanes:  Characterization of Solâ^'Gel-Encapsulated Nanoscale Feâ^'Co Catalysts in the Microchannels. Industrial & Engineering Chemistry Research, 2005, 44, 5602-5607.	3.7	22
26	Tris(hydroxyphenyl)ethane Benzotriazole:  A Copolymerizable UV Light Stabilizer,1a. Chemistry of Materials, 1999, 11, 109-116.	6.7	68
27	Cryogenic Electron Tunneling within Mixed-Metal Hemoglobin Hybrids:Â Protein Glassing and Electron-Transfer Energetics. Journal of the American Chemical Society, 1998, 120, 11401-11407.	13.7	36
28	Gas-phase studies on reductive cyclization to a benzotriazole derivative from its precursors by liquid chromatography/thermabeam tandem mass spectrometry. Organic Mass Spectrometry, 1994, 29, 226-231.	1.3	3
29	Resonance Raman studies of Rieske-type proteins. Biochimica Et Biophysica Acta - Bioenergetics, 1992, 1140, 175-183.	1.0	60
30	Long-Range Electron Transfer Within Mixed-Metal Hemoglobin Hybrids. Advances in Chemistry Series, 1991, , 201-213.	0.6	9
31	Zinc and magnesium substitution in hemoglobin: cyclic electron transfer within mixed-metal hybrids and crystal structure of MgHb. Journal of the American Chemical Society, 1991, 113, 6520-6526.	13.7	17
32	Temperature-independent electron transfer in mixed-metal hemoglobin hybrids. The Journal of Physical Chemistry, 1991, 95, 1-3.	2.9	32
33	Resonance Raman spectra of the [2Fe-2S] clusters of the Rieske protein from Thermus and phthalate dioxygenase from Pseudomonas. Journal of the American Chemical Society, 1987, 109, 1559-1561.	13.7	47
34	Electron spin resonance studies of two copper(II) N-alkylporphyrins. Inorganica Chimica Acta, 1985, 99, L9-L11.	2.4	1
35	Kinetics and mechanisms of dealkylation reactions of N-methylporphyrin complexes. 3. Effects of porphyrin ring substituents and reaction media. Inorganic Chemistry, 1983, 22, 1095-1099.	4.0	9
36	Cu-Ni Nanocatalysts in Mesoporous MCM-41 and TiO ₂ to Produce Hydrogen for Fuel Cells via Steam Reforming Reactions. Advanced Materials Research, 0, 1096, 161-168.	0.3	6

ARTICLE IF CITATIONS

37 Metal-Molecule Heterostructures: Charge Transfer. , 0, , 2522-2534. 0