Liqiang Zou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1195945/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein encapsulation in alginate hydrogel beads: Effect of pH on microgel stability, protein retention and protein release. Food Hydrocolloids, 2016, 58, 308-315.	5.6	200
2	Stability, rheology, and β-carotene bioaccessibility of high internal phase emulsion gels. Food Hydrocolloids, 2019, 88, 210-217.	5.6	198
3	Coencapsulation of (â~)-Epigallocatechin-3-gallate and Quercetin in Particle-Stabilized W/O/W Emulsion Gels: Controlled Release and Bioaccessibility. Journal of Agricultural and Food Chemistry, 2018, 66, 3691-3699.	2.4	188
4	Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility. Food Hydrocolloids, 2019, 89, 80-89.	5.6	182
5	Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles. Food Research International, 2016, 81, 74-82.	2.9	163
6	Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids and Surfaces B: Biointerfaces, 2014, 117, 330-337.	2.5	161
7	Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid-Coated Nanoparticles: An in Vitro and in Vivo Study. Journal of Agricultural and Food Chemistry, 2018, 66, 1488-1497.	2.4	161
8	Enhancing nutraceutical bioavailability using excipient emulsions: Influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin. Journal of Functional Foods, 2015, 15, 72-83.	1.6	152
9	Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances, 2017, 7, 25978-25986.	1.7	152
10	Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food and Function, 2018, 9, 1829-1839.	2.1	144
11	Fabrication of OSA Starch/Chitosan Polysaccharide-Based High Internal Phase Emulsion via Altering Interfacial Behaviors. Journal of Agricultural and Food Chemistry, 2019, 67, 10937-10946.	2.4	142
12	Encapsulation of curcumin in polysaccharide-based hydrogel beads: Impact of bead type on lipid digestion and curcumin bioaccessibility. Food Hydrocolloids, 2016, 58, 160-170.	5.6	133
13	Carboxymethyl chitosan-pullulan edible films enriched with galangal essential oil: Characterization and application in mango preservation. Carbohydrate Polymers, 2021, 256, 117579.	5.1	129
14	One-step preparation of high internal phase emulsions using natural edible Pickering stabilizers: Gliadin nanoparticles/gum Arabic. Food Hydrocolloids, 2020, 100, 105381.	5.6	122
15	Review of recent advances in the preparation, properties, and applications of high internal phase emulsions. Trends in Food Science and Technology, 2021, 112, 36-49.	7.8	122
16	Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate. Food Chemistry, 2016, 196, 396-404.	4.2	118
17	Encapsulation of β-carotene-loaded oil droplets in caseinate/alginate microparticles: Enhancement of carotenoid stability and bioaccessibility. Journal of Functional Foods, 2018, 40, 527-535.	1.6	111
18	Enhancing Nutraceutical Performance Using Excipient Foods: Designing Food Structures and Compositions to Increase Bioavailability. Comprehensive Reviews in Food Science and Food Safety, 2015, 14, 824-847.	5.9	108

#	Article	IF	CITATIONS
19	Utilizing Food Matrix Effects To Enhance Nutraceutical Bioavailability: Increase of Curcumin Bioaccessibility Using Excipient Emulsions. Journal of Agricultural and Food Chemistry, 2015, 63, 2052-2062.	2.4	107
20	pH-, ion- and temperature-dependent emulsion gels: Fabricated by addition of whey protein to gliadin-nanoparticle coated lipid droplets. Food Hydrocolloids, 2018, 77, 870-878.	5.6	104
21	Enhancement of carotenoid bioaccessibility from carrots using excipient emulsions: influence of particle size of digestible lipid droplets. Food and Function, 2016, 7, 93-103.	2.1	101
22	Enhancement of the solubility, stability and bioaccessibility of quercetin using protein-based excipient emulsions. Food Research International, 2018, 114, 30-37.	2.9	96
23	Food-grade nanoparticles for encapsulation, protection and delivery of curcumin: comparison of lipid, protein, and phospholipid nanoparticles under simulated gastrointestinal conditions. RSC Advances, 2016, 6, 3126-3136.	1.7	93
24	Rheological, structural, and microstructural properties of ethanol induced cold-set whey protein emulsion gels: Effect of oil content. Food Chemistry, 2019, 291, 22-29.	4.2	92
25	Utilization of biopolymers to stabilize curcumin nanoparticles prepared by the pH-shift method: Caseinate, whey protein, soy protein and gum Arabic. Food Hydrocolloids, 2020, 107, 105963.	5.6	91
26	Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin. Carbohydrate Polymers, 2017, 156, 322-332.	5.1	90
27	Mushroom (Agaricus bisporus) polyphenoloxidase inhibited by apigenin: Multi-spectroscopic analyses and computational docking simulation. Food Chemistry, 2016, 203, 430-439.	4.2	88
28	Designing excipient emulsions to increase nutraceutical bioavailability: emulsifier type influences curcumin stability and bioaccessibility by altering gastrointestinal fate. Food and Function, 2015, 6, 2475-2486.	2.1	84
29	A stable high internal phase emulsion fabricated with OSA-modified starch: an improvement in β-carotene stability and bioaccessibility. Food and Function, 2019, 10, 5446-5460.	2.1	84
30	Co-encapsulation of Epigallocatechin Gallate (EGCG) and Curcumin by Two Proteins-Based Nanoparticles: Role of EGCG. Journal of Agricultural and Food Chemistry, 2019, 67, 13228-13236.	2.4	84
31	Boosting the bioavailability of hydrophobic nutrients, vitamins, and nutraceuticals in natural products using excipient emulsions. Food Research International, 2016, 88, 140-152.	2.9	81
32	Improvement on stability, loading capacity and sustained release of rhamnolipids modified curcumin liposomes. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110460.	2.5	75
33	A review of the rheological properties of dilute and concentrated food emulsions. Journal of Texture Studies, 2020, 51, 45-55.	1.1	72
34	Encapsulation of Lipophilic Polyphenols into Nanoliposomes Using pH-Driven Method: Advantages and Disadvantages. Journal of Agricultural and Food Chemistry, 2019, 67, 7506-7511.	2.4	69
35	Antifungal effect of cinnamaldehyde, eugenol and carvacrol nanoemulsion against Penicillium digitatum and application in postharvest preservation of citrus fruit. LWT - Food Science and Technology, 2021, 141, 110924.	2.5	68
36	Pickering-stabilized emulsion gels fabricated from wheat protein nanoparticles: Effect of pH, NaCl and oil content. Journal of Dispersion Science and Technology, 2018, 39, 826-835.	1.3	67

#	Article	IF	CITATIONS
37	Fabrication and Characterization of Curcumin-Loaded Liposomes Formed from Sunflower Lecithin: Impact of Composition and Environmental Stress. Journal of Agricultural and Food Chemistry, 2018, 66, 12421-12430.	2.4	65
38	Enhancing Nutraceutical Bioavailability from Raw and Cooked Vegetables Using Excipient Emulsions: Influence of Lipid Type on Carotenoid Bioaccessibility from Carrots. Journal of Agricultural and Food Chemistry, 2015, 63, 10508-10517.	2.4	64
39	Influence of ionic strength and thermal pretreatment on the freeze-thaw stability of Pickering emulsion gels. Food Chemistry, 2020, 303, 125401.	4.2	64
40	Fabrication of polysaccharide-based high internal phase emulsion gels: Enhancement of curcumin stability and bioaccessibility. Food Hydrocolloids, 2021, 117, 106679.	5.6	63
41	Different modes of inhibition for organic acids on polyphenoloxidase. Food Chemistry, 2016, 199, 439-446.	4.2	61
42	Influence of Lipid Phase Composition of Excipient Emulsions on Curcumin Solubility, Stability, and Bioaccessibility. Food Biophysics, 2016, 11, 213-225.	1.4	58
43	Plant-Based Nanoparticles Prepared from Proteins and Phospholipids Consisting of a Core–Multilayer-Shell Structure: Fabrication, Stability, and Foamability. Journal of Agricultural and Food Chemistry, 2019, 67, 6574-6584.	2.4	58
44	Enhancement of beta-carotene stability by encapsulation in high internal phase emulsions stabilized by modified starch and tannic acid. Food Hydrocolloids, 2020, 109, 106083.	5.6	54
45	A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives-based nanoliposome: Capacity to improve in vitro digestion stability of (â~)-epigallocatechin gallate. Food Research International, 2015, 69, 114-120.	2.9	50
46	Potential of Excipient Emulsions for Improving Quercetin Bioaccessibility and Antioxidant Activity: An in Vitro Study. Journal of Agricultural and Food Chemistry, 2016, 64, 3653-3660.	2.4	49
47	Effect of Cinnamon Essential Oil Nanoemulsion Combined with Ascorbic Acid on Enzymatic Browning of Cloudy Apple Juice. Food and Bioprocess Technology, 2020, 13, 860-870.	2.6	48
48	Tunable high internal phase emulsions (HIPEs) formulated using lactoferrin-gum Arabic complexes. Food Hydrocolloids, 2021, 113, 106445.	5.6	46
49	Aggregation and conformational change of mushroom (Agaricus bisporus) polyphenoloxidase subjected to thermal treatment. Food Chemistry, 2017, 214, 423-431.	4.2	44
50	Gastrointestinal Fate of Fluid and Gelled Nutraceutical Emulsions: Impact on Proteolysis, Lipolysis, and Quercetin Bioaccessibility. Journal of Agricultural and Food Chemistry, 2018, 66, 9087-9096.	2.4	44
51	Inhibitory effects of organic acids on polyphenol oxidase: From model systems to food systems. Critical Reviews in Food Science and Nutrition, 2020, 60, 3594-3621.	5.4	42
52	Encapsulation of protein nanoparticles within alginate microparticles: Impact of pH and ionic strength on functional performance. Journal of Food Engineering, 2016, 178, 81-89.	2.7	41
53	Impact of Lipid Content on the Ability of Excipient Emulsions to Increase Carotenoid Bioaccessibility from Natural Sources (Raw and Cooked Carrots). Food Biophysics, 2016, 11, 71-80.	1.4	40
54	Formation and characterization of oil-in-water emulsions stabilized by polyphenol-polysaccharide complexes: Tannic acid and Î ² -glucan. Food Research International, 2019, 123, 266-275.	2.9	40

#	Article	IF	CITATIONS
55	Impact of encapsulation of probiotics in oil-in-water high internal phase emulsions on their thermostability and gastrointestinal survival. Food Hydrocolloids, 2022, 126, 107478.	5.6	40
56	Storage Stability and Antibacterial Activity of Eugenol Nanoliposomes Prepared by an Ethanol Injection–Dynamic High-Pressure Microfluidization Method. Journal of Food Protection, 2015, 78, 22-30.	0.8	37
57	Encapsulation of hydrophobic capsaicin within the aqueous phase of water-in-oil high internal phase emulsions: Controlled release, reduced irritation, and enhanced bioaccessibility. Food Hydrocolloids, 2022, 123, 107184.	5.6	37
58	Food Matrix Effects on Nutraceutical Bioavailability: Impact of Protein on Curcumin Bioaccessibility and Transformation in Nanoemulsion Delivery Systems and Excipient Nanoemulsions. Food Biophysics, 2016, 11, 142-153.	1.4	35
59	Hybrid Bionanoparticle-Stabilized Pickering Emulsions for Quercetin Delivery: Effect of Interfacial Composition on Release, Lipolysis, and Bioaccessibility. ACS Applied Nano Materials, 2019, 2, 6462-6472.	2.4	33
60	Anti-browning effect of Rosa roxburghii on apple juice and identification of polyphenol oxidase inhibitors. Food Chemistry, 2021, 359, 129855.	4.2	32
61	Rheological and microstructural properties of cold-set emulsion gels fabricated from mixed proteins: Whey protein and lactoferrin. Food Research International, 2019, 119, 315-324.	2.9	30
62	Enhancing the oxidative stability of algal oil emulsions by adding sweet orange oil: Effect of essential oil concentration. Food Chemistry, 2021, 355, 129508.	4.2	30
63	Different inhibition mechanisms of gentisic acid and cyaniding-3-O-glucoside on polyphenoloxidase. Food Chemistry, 2017, 234, 445-454.	4.2	29
64	Cereal proteins in nanotechnology: formulation of encapsulation and delivery systems. Current Opinion in Food Science, 2019, 25, 28-34.	4.1	29
65	Enhancing the physicochemical performance of myofibrillar gels using Pickering emulsion fillers: Rheology, microstructure and stability. Food Hydrocolloids, 2022, 128, 107606.	5.6	29
66	Effect of ultrasound combined with malic acid on the activity and conformation of mushroom (Agaricus bisporus) polyphenoloxidase. Enzyme and Microbial Technology, 2016, 90, 61-68.	1.6	28
67	Effect of Chitosan Coatings with Cinnamon Essential Oil on Postharvest Quality of Mangoes. Foods, 2021, 10, 3003.	1.9	28
68	Fabrication of Caseinate Stabilized Thymol Nanosuspensions via the pH-Driven Method: Enhancement in Water Solubility of Thymol. Foods, 2021, 10, 1074.	1.9	24
69	Carboxymethyl cellulose-based water barrier coating regulated postharvest quality and ROS metabolism of pakchoi (Brassica chinensis L.). Postharvest Biology and Technology, 2022, 185, 111804.	2.9	24
70	Gliadin Nanoparticles Pickering Emulgels for β-Carotene Delivery: Effect of Particle Concentration on the Stability and Bioaccessibility. Molecules, 2020, 25, 4188.	1.7	21
71	Novel folated pluronic F127 modified liposomes for delivery of curcumin: preparation, release, and cytotoxicity. Journal of Microencapsulation, 2020, 37, 220-229.	1.2	20
72	The Formation of Chitosan-Coated Rhamnolipid Liposomes Containing Curcumin: Stability and In Vitro Digestion. Molecules, 2021, 26, 560.	1.7	20

#	Article	IF	CITATIONS
73	Encapsulation of bitter peptides in water-in-oil high internal phase emulsions reduces their bitterness and improves gastrointestinal stability. Food Chemistry, 2022, 386, 132787.	4.2	20
74	Impact of polysaccharide mixtures on the formation, stability and EGCG loading of water-in-oil high internal phase emulsions. Food Chemistry, 2022, 372, 131225.	4.2	19
75	Utilization of polysaccharide-based high internal phase emulsion for nutraceutical encapsulation: Enhancement of carotenoid loading capacity and stability. Journal of Functional Foods, 2021, 84, 104601.	1.6	19
76	Chemical composition and evaluation of antioxidant activities, antimicrobial, and anti-melanogenesis effect of the essential oils extracted from Dalbergia pinnata (Lour.) Prain. Journal of Ethnopharmacology, 2020, 254, 112731.	2.0	18
77	Inhibitory mechanism of salicylic acid on polyphenol oxidase: A cooperation between acidification and binding effects. Food Chemistry, 2021, 348, 129100.	4.2	18
78	Liposomes consisting of pluronic F127 and phospholipid: Effect of matrix on morphology, stability and curcumin delivery. Journal of Dispersion Science and Technology, 2020, 41, 207-213.	1.3	16
79	Differential inhibitory effects of organic acids on pear polyphenol oxidase in model systems and pear puree. LWT - Food Science and Technology, 2020, 118, 108704.	2.5	16
80	Utilization of protein nanoparticles to improve the dispersibility, stability, and functionality of a natural pigment: Norbixin. Food Hydrocolloids, 2022, 124, 107329.	5.6	16
81	Probiotic encapsulation in water-in-oil high internal phase emulsions: Enhancement of viability under food and gastrointestinal conditions. LWT - Food Science and Technology, 2022, 163, 113499.	2.5	16
82	Effect of modified atmosphere packaging combined with plant essential oils on preservation of fresh-cut lily bulbs. LWT - Food Science and Technology, 2022, 162, 113513.	2.5	16
83	Effect of dynamic high pressure microfluidization on structure and stability of pluronic F127 modified liposomes. Journal of Dispersion Science and Technology, 2019, 40, 982-989.	1.3	13
84	Polyphenol oxidase inhibited by 4-hydroxycinnamic acid and naringenin: Multi-spectroscopic analyses and molecular docking simulation at different pH. Food Chemistry, 2022, 396, 133662.	4.2	13
85	Study on curcumin encapsulated in whole nutritional food model milk: Effect of fat content, and partitioning situation. Journal of Functional Foods, 2022, 90, 104990.	1.6	12
86	Tailoring lipid digestion profiles using combined delivery systems: mixtures of nanoemulsions and filled hydrogel beads. RSC Advances, 2016, 6, 65631-65637.	1.7	11
87	<i>In situ</i> enzymatic synthesis and purification of theaflavinâ€3,3′â€digallate monomer and incorporation into nanoliposome. International Journal of Food Science and Technology, 2018, 53, 2552-2559.	1.3	11
88	Ameliorative effects of snake (Deinagkistrodon acutus) oil and its main fatty acids against UVB-induced skin photodamage in mice. Journal of Photochemistry and Photobiology B: Biology, 2019, 197, 111538.	1.7	9
89	Thermal Inactivation Kinetics of Kudzu (Pueraria lobata) Polyphenol Oxidase and the Influence of Food Constituents. Foods, 2021, 10, 1320.	1.9	8
90	Improving norbixin dispersibility and stability by liposomal encapsulation using the <scp>pH</scp> â€driven method. Journal of the Science of Food and Agriculture, 2022, 102, 2070-2079.	1.7	8

#	Article	IF	CITATIONS
91	Comparing the effect of benzoic acid and cinnamic acid hydroxyl derivatives on polyphenol oxidase: activity, action mechanism, and molecular docking. Journal of the Science of Food and Agriculture, 2022, 102, 3771-3780.	1.7	8
92	Effects of Microporous Packaging Combined with Chitosan Coating on the Quality and Physiological Metabolism of Passion Fruit after Harvest. Food and Bioprocess Technology, 2022, 15, 1836-1850.	2.6	8
93	Unfolding and Inhibition of Polyphenoloxidase Induced by Acidic pH and Mild Thermal Treatment. Food and Bioprocess Technology, 2019, 12, 1907-1916.	2.6	6
94	Improving Anti-listeria Activity of Thymol Emulsions by Adding Lauric Acid. Frontiers in Nutrition, 2022, 9, 859293.	1.6	2
95	Effect of pluronic block composition on the structure, stability, and cytotoxicity of liposomes. Journal of Dispersion Science and Technology, 2021, 42, 1651-1659.	1.3	1
96	Effect of Galangal Essential Oil Emulsion on Quality Attributes of Cloudy Pineapple Juice. Frontiers in Nutrition, 2021, 8, 751405.	1.6	1
97	Hydrocolloids for the encapsulation and delivery of active compounds. , 2021, , 157-194.		0