Marie-Pascale Noël

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1195901/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 2007, 102, 361-395.	1.1	619
2	How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children's mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience and Education, 2013, 2, 48-55.	1.5	501
3	Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 2010, 115, 10-25.	1.1	268
4	Finger gnosia: a predictor of numerical abilities in children?. Child Neuropsychology, 2005, 11, 413-430.	0.8	257
5	Does finger training increase young children's numerical performance?. Cortex, 2008, 44, 368-375.	1.1	236
6	Neural Correlates of Symbolic Number Comparison in Developmental Dyscalculia. Journal of Cognitive Neuroscience, 2010, 22, 860-874.	1.1	185
7	Images of numbers, or "when 98 is upper left and 6 sky blueâ€: Cognition, 1992, 44, 159-196.	1.1	180
8	Magnitude comparison in preschoolers: what counts? Influence of perceptual variables. Journal of Experimental Child Psychology, 2004, 87, 57-84.	0.7	158
9	Arabic number reading deficit: A single case study or when 236 is read (2306) and judged superior to 1258. Cognitive Neuropsychology, 1993, 10, 317-339.	0.4	122
10	Developmental Changes in the Profiles of Dyscalculia: An Explanation Based on a Double Exact-and-Approximate Number Representation Model. Frontiers in Human Neuroscience, 2011, 5, 165.	1.0	122
11	The Whorfian hypothesis and numerical cognition: is `twenty-four' processed in the same way as `four-and-twenty'?. Cognition, 1998, 66, 51-77.	1.1	115
12	Counting on working memory when learning to count and to add: A preschool study Developmental Psychology, 2009, 45, 1630-1643.	1.2	114
13	Comparing the magnitude of two fractions with common components: Which representations are used by 10- and 12-year-olds?. Journal of Experimental Child Psychology, 2010, 107, 244-259.	0.7	95
14	The development of automatic numerosity processing in preschoolers: Evidence for numerosity-perceptual interference Developmental Psychology, 2008, 44, 544-560.	1.2	91
15	Rational numbers: Componential versus holistic representation of fractions in a magnitude comparison task. Quarterly Journal of Experimental Psychology, 2009, 62, 1598-1616.	0.6	90
16	The development of children's inhibition: Does parenting matter?. Journal of Experimental Child Psychology, 2014, 122, 166-182.	0.7	77
17	Involvement of short-term memory in complex mental calculation. Memory and Cognition, 2001, 29, 34-42.	0.9	70
18	About the influence of the presentation format on arithmetical-fact retrieval processes. Cognition, 1997, 63, 335-374.	1.1	64

MARIE-PASCALE NOëL

#	Article	IF	CITATIONS
19	Comparing 5/7 and 2/9: Adults can do it by accessing the magnitude of the whole fractions. Acta Psychologica, 2010, 135, 284-292.	0.7	62
20	Arithmetic facts storage deficit: the hypersensitivityâ€toâ€interference in memory hypothesis. Developmental Science, 2014, 17, 434-442.	1.3	59
21	The detrimental effect of interference in multiplication facts storing: Typical development and individual differences Journal of Experimental Psychology: General, 2014, 143, 2380-2400.	1.5	58
22	The Inhibition Capacities of Children with Mathematical Disabilities. Child Neuropsychology, 2007, 14, 1-20.	0.8	56
23	Spatial and numerical processing in children with high and low visuospatial abilities. Journal of Experimental Child Psychology, 2015, 132, 84-98.	0.7	48
24	Is finger-counting necessary for the development of arithmetic abilities?. Frontiers in Psychology, 2011, 2, 242.	1.1	47
25	Numerical and nonnumerical estimation in children with and without mathematical learning disabilities. Child Neuropsychology, 2012, 18, 550-575.	0.8	47
26	A case study of arithmetic facts dyscalculia caused by a hypersensitivity-to-interference in memory. Cortex, 2013, 49, 50-70.	1.1	47
27	Numerical estimation in adults with and without developmental dyscalculia. Learning and Individual Differences, 2012, 22, 164-170.	1.5	46
28	The role of fingers in the development of counting and arithmetic skills. Acta Psychologica, 2015, 156, 37-44.	0.7	43
29	Serial-order learning impairment and hypersensitivity-to-interference in dyscalculia. Cognition, 2015, 144, 38-48.	1.1	38
30	The interference effect in arithmetic fact solving: An fMRI study. NeuroImage, 2015, 116, 92-101.	2.1	36
31	The relationship between working memory for serial order and numerical development: A longitudinal study Developmental Psychology, 2014, 50, 1667-1679.	1.2	34
32	Improving Preschoolers' Arithmetic through Number Magnitude Training: The Impact of Non-Symbolic and Symbolic Training. PLoS ONE, 2016, 11, e0166685.	1.1	33
33	Visual experience influences the interactions between fingers and numbers. Cognition, 2014, 133, 91-96.	1.1	26
34	Mental Arithmetic in Children With Mathematics Learning Disabilities. Journal of Learning Disabilities, 2008, 41, 498-513.	1.5	25
35	Magnitude Representations in Williams Syndrome: Differential Acuity in Time, Space and Number Processing. PLoS ONE, 2013, 8, e72621.	1.1	25
36	Spatial and numerical processing in children with non-verbal learning disabilities. Research in Developmental Disabilities, 2015, 47, 61-72.	1.2	23

MARIE-PASCALE NOëL

#	Article	IF	CITATIONS
37	The nonintentional processing of Arabic numbers in children. Journal of Clinical and Experimental Neuropsychology, 2007, 29, 225-234.	0.8	22
38	Recruitment of the occipital cortex by arithmetic processing follows computational bias in the congenitally blind. NeuroImage, 2019, 186, 549-556.	2.1	21
39	The mental representation of the magnitude of symbolic and nonsymbolic ratios in adults. Quarterly Journal of Experimental Psychology, 2012, 65, 702-724.	0.6	20
40	Developmental Dyscalculia in Adults: Beyond Numerical Magnitude Impairment. Journal of Learning Disabilities, 2018, 51, 600-611.	1.5	19
41	The Inhibition of Exogenous Distracting Information in Children with Learning Disabilities. Journal of Learning Disabilities, 2005, 38, 400-410.	1.5	18
42	Automaticity for numerical magnitude of two-digit Arabic numbers in children. Acta Psychologica, 2008, 129, 264-272.	0.7	18
43	The role of physical digit representation and numerical magnitude representation in children's multiplication fact retrieval. Journal of Experimental Child Psychology, 2016, 152, 41-53.	0.7	13
44	The Processing of Symbolic and Nonsymbolic Ratios in School-Age Children. PLoS ONE, 2013, 8, e82002.	1.1	9
45	Visuo-spatial processes as a domain-general factor impacting numerical development in atypical populations. Journal of Numerical Cognition, 2017, 3, 344-364.	0.6	8
46	Impact of ageing on problem size and proactive interference in arithmetic facts solving. Quarterly Journal of Experimental Psychology, 2019, 72, 446-456.	0.6	6
47	Early visual deprivation does not prevent the emergence of basic numerical abilities in blind children. Cognition, 2021, 210, 104586.	1.1	6
48	Mathematical Profile Test: A Preliminary Evaluation of an Online Assessment for Mathematics Skills of Children in Grades 1–6. Behavioral Sciences (Basel, Switzerland), 2020, 10, 126.	1.0	5
49	The innate schema of natural numbers does not explain historical, cultural, and developmental differences. Behavioral and Brain Sciences, 2008, 31, 664-665.	0.4	4
50	Hypersensitivity-to-Interference in Memory as a Possible Cause of Difficulty in Arithmetic Facts Storing. , 2018, , 387-408.		4
51	Investigating the respective contribution of sensory modalities and spatial disposition in numerical training. Journal of Experimental Child Psychology, 2020, 190, 104729.	0.7	3
52	Preschoolers' mastery of advanced counting: The best predictor of addition skills 2Âyears later. Journal of Experimental Child Psychology, 2021, 212, 105252.	0.7	3
53	Transparent number-naming system gives only limited advantage for preschooler's numerical development: Comparisons of Vietnamese and French-speaking children. PLoS ONE, 2020, 15, e0243472.	1.1	2
54	Magnitude processing in populations with spina-bifida: The role of visuospatial and working memory processes. Research in Developmental Disabilities, 2020, 102, 103655.	1.2	1

#	Article	IF	CITATIONS
55	Chapitre 3. La dyscalculie développementaleÂ: à l'interface de l'orthophonie et de la neuropsychologie. 2018, , 43-67.		1