Marie-Pascale No ${ }^{\wedge} « 1$

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/1195901/publications.pdf
Version: 2024-02-01

7 Recruitment of the occipital cortex by arithmetic processing follows computational bias in the congenitally blind. Neurolmage, 2019, 186, 549-556.

8 Impact of ageing on problem size and proactive interference in arithmetic facts solving. Quarterly Journal of Experimental Psychology, 2019, 72, 446-456.
9 Developmental Dyscalculia in Adults: Beyond Numerical Magnitude Impairment. Journal of Learning

populations. Journal of Numerical Cognition, 2017, 3, 344-364.

Improving Preschoolersâ $€^{\text {TM }}$ Arithmetic through Number Magnitude Training: The Impact of Non-Symbolic

The role of fingers in the development of counting and arithmetic skills. Acta Psychologica, 2015, 156,
19

20

> Spatial and numerical processing in children with non-verbal learning disabilities. Research in
> Developmental Disabilities, 2015, 47, 61-72.
1.2

23

The detrimental effect of interference in multiplication facts storing: Typical development and
1.5 individual differences.. Journal of Experimental Psychology: General, 2014, 143, 2380-2400.

Arithmetic facts storage deficit: the hypersensitivityâ€toâ€interference in memory hypothesis.
Developmental Science, 2014, 17, 434-442.
1.3

22 Visual experience influences the interactions between fingers and numbers. Cognition, 2014, 133, 91-96.
1.1

26
$1.1 \quad 26$

23 The development of childrenâ $€^{T M}$ s inhibition: Does parenting matter?. Journal of Experimental Child
 Psychology, 2014, 122, 166-182.

$0.7 \quad 77$

24 The relationship between working memory for serial order and numerical development: A
longitudinal study.. Developmental Psychology, 2014, 50, 1667-1679.

> How do symbolic and non-symbolic numerical magnitude processing skills relate to individual
> A case study of arithmetic facts dyscalculia caused by a hypersensitivity-to-interference in memory.
> Cortex, 2013, 49, 50-70.
> Magnitude Representations in Williams Syndrome: Differential Acuity in Time, Space and Number
> Processing. PLoS ONE, 2013, 8, e72621.

28 The Processing of Symbolic and Nonsymbolic Ratios in School-Age Children. PLoS ONE, 2013, 8, e82002.
1.1

9

29	Numerical and nonnumerical estimation in children with and without mathematical learning disabilities. Child Neuropsychology, 2012, 18, 550-575.	0.8	47
30	The mental representation of the magnitude of symbolic and nonsymbolic ratios in adults. Quarterly Journal of Experimental Psychology, 2012, 65, 702-724.	0.6	20
31	Numerical estimation in adults with and without developmental dyscalculia. Learning and Individual Differences, 2012, 22, 164-170.	1.5	46
32	Is finger-counting necessary for the development of arithmetic abilities?. Frontiers in Psychology, 2011, 2, 242.	1.1	47
33	Developmental Changes in the Profiles of Dyscalculia: An Explanation Based on a Double Exact-and-Approximate Number Representation Model. Frontiers in Human Neuroscience, 2011, 5, 165	1.0	122

34 Comparing 5/7 and 2/9: Adults can do it by accessing the magnitude of the whole fractions. Acta
Psychologica, 2010, 135, 284-292.

Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition,
2010, 115, 10-25.
Neural Correlates of Symbolic Number Comparison in Developmental Dyscalculia. Journal of
Cognitive Neuroscience, 2010, 22, 860-874.
39 Counting on working memory when learning to count and to add: A preschool study.. Developmental
Psychology, 2009, 45, 1630-1643.

$40 \quad$| Automaticity for numerical magnitude of two-digit Arabic numbers in children. Acta Psychologica, |
| :--- |
| $2008,129,264-272$. |

The innate schema of natural numbers does not explain historical, cultural, and developmental
differences. Behavioral and Brain Sciences, 2008, 31, 664-665.
The development of automatic numerosity processing in preschoolers: Evidence for
numerosity-perceptual interference.. Developmental Psychology, 2008, 44, 544-560
The Inhibition Capacities of Children with Mathematical Disabilities. Child Neuropsychology, 2007, 14,
1-20.
The nonintentional processing of Arabic numbers in children. Journal of Clinical and Experimental Neuropsychology, 2007, 29, 225-234.
Basic numerical skills in children with mathematics learning disabilities: A comp
non-symbolic number magnitude processing. Cognition, 2007, 102, 361-395.$0.4 \quad 4$1.291
560.822
.1.1619
Finger gnosia: a predictor of numerical abilities in children?. Child Neuropsychology, 2005, 11, 413-430.0.8257
49
The Inhibition of Exogenous Distracting Information in Children with Learning Disabilities. Journal of 1.5 18 Learning Disabilities, 2005, 38, 400-410.Magnitude comparison in preschoolers: what counts? Influence of perceptual variables. Journal of0.7158Experimental Child Psychology, 2004, 87, 57-84.
Involvement of short-term memory in complex mental calculation. Memory and Cognition, 2001, 29,
51 34-42.1.1115The Whorfian hypothesis and numerical cognition: is 'twenty-four' processed in the same way as1.1
About the influence of the presentation format on arithmetical-fact retrieval processes. Cognition,
$1997,63,335-374$.

