Gabriel Luna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11958606/publications.pdf

Version: 2024-02-01

840776 1125743 19 962 11 13 citations h-index g-index papers 20 20 20 1731 citing authors docs citations times ranked all docs

#	Article	IF	Citations
1	LRP1 is a master regulator of tau uptake and spread. Nature, 2020, 580, 381-385.	27.8	326
2	A farnesyltransferase inhibitor activates lysosomes and reduces tau pathology in mice with tauopathy. Science Translational Medicine, $2019,11,1$	12.4	75
3	Sox2 regulates astrocytic and vascular development in the retina. Glia, 2018, 66, 623-636.	4.9	23
4	Assessment of Outer Retinal Remodeling in the Hibernating 13-Lined Ground Squirrel., 2018, 59, 2538.		23
5	Cell-mediated remodeling of biomimetic encapsulating hydrogels triggered by adipogenic differentiation of adipose stem cells. Journal of Tissue Engineering, 2016, 7, 204173141667048.	5.5	15
6	Anatomical and Gene Expression Changes in the Retinal Pigmented Epithelium Atrophy 1 (rpea1) Mouse: A Potential Model of Serous Retinal Detachment., 2016, 57, 4641.		3
7	Noninvasive imaging of the thirteen-lined ground squirrel photoreceptor mosaic. Visual Neuroscience, 2016, 33, e003.	1.0	26
8	Astrocyte structural reactivity and plasticity in models of retinal detachment. Experimental Eye Research, 2016, 150, 4-21.	2.6	52
9	Strategies for bioengineered scaffolds that support adipose stem cells in regenerative therapies. Regenerative Medicine, 2016, 11, 589-599.	1.7	2
10	Characterizing spatial distributions of astrocytes in the mammalian retina. Bioinformatics, 2015, 31, 2024-2031.	4.1	19
11	Three-dimensional organization of nascent rod outer segment disk membranes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14870-14875.	7.1	73
12	Quantifying spatial relationships from whole retinal images. Bioinformatics, 2013, 29, 940-946.	4.1	4
13	Optomotor and immunohistochemical changes in the juvenile S334ter rat. Experimental Eye Research, 2012, 104, 65-73.	2.6	19
14	The fate of MÃ $\frac{1}{4}$ ller's glia following experimental retinal detachment: nuclear migration, cell division, and subretinal glial scar formation. Molecular Vision, 2010, 16, 1361-72.	1.1	67
15	Expression profiles of nestin and synemin in reactive astrocytes and MÃ $^1\!/\!4$ ller cells following retinal injury: a comparison with glial fibrillar acidic protein and vimentin. Molecular Vision, 2010, 16, 2511-23.	1.1	75
16	The Effects of Transient Retinal Detachment on Cavity Size and Glial and Neural Remodeling in a Mouse Model of X-Linked Retinoschisis., 2009, 50, 3977.		14
17	Mul`ler Cell Reactivity and Photoreceptor Cell Death Are Reduced after Experimental Retinal Detachment Using an Inhibitor of the Akt/mTOR Pathway. , 2009, 50, 4429.		34
18	Abnormal Reactivity of Mul´ller Cells after Retinal Detachment in Mice Deficient in GFAP and Vimentin. , 2008, 49, 3659.		104

#	Article	IF	CITATIONS
19	Long-term transverse imaging of the hippocampus with glass microperiscopes. ELife, $0,11,.$	6.0	8