Hidekazu Sekine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1195811/publications.pdf Version: 2024-02-01

HIDEKAZII SEKINE

#	Article	IF	CITATIONS
1	Perfusable vascular tree like construction in 3D cell-dense tissues using artificial vascular bed. Microvascular Research, 2022, 141, 104321.	1.1	5
2	A novel alveolar epithelial cell sheet fabricated under feeder-free conditions for potential use in pulmonary regenerative therapy. Regenerative Therapy, 2022, 19, 113-121.	1.4	2
3	Bioartificial pulsatile cuffs fabricated from human induced pluripotent stem cell-derived cardiomyocytes using a pre-vascularization technique. Npj Regenerative Medicine, 2022, 7, 22.	2.5	4
4	Continuous measurement of surface electrical potentials from transplanted cardiomyocyte tissue derived from human-induced pluripotent stem cells under physiological conditions in vivo. Heart and Vessels, 2021, 36, 899-909.	0.5	1
5	Capillary Networks for Bio-Artificial Three-Dimensional Tissues Fabricated Using Cell Sheet Based Tissue Engineering. International Journal of Molecular Sciences, 2021, 22, 92.	1.8	14
6	Allogeneic adipose-derived mesenchymal stem cell sheet that produces neurological improvement with angiogenesis and neurogenesis in a rat stroke model. Journal of Neurosurgery, 2020, 132, 442-455.	0.9	44
7	Intermittent application of external positive pressure helps to preserve organ viability during ex vivo perfusion and culture. Journal of Artificial Organs, 2020, 23, 36-45.	0.4	8
8	Engineering of functional cardiac tubes by stepwise transplantation of cardiac cell sheets onto intestinal mesentery. Heart and Vessels, 2020, 35, 859-867.	0.5	4
9	A novel method to align cells in a cardiac tissueâ€like construct fabricated by cell sheetâ€based tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 944-954.	1.3	25
10	Bioartificial pleura using allogenic cell sheet for closing of lung air leakage. JTCVS Techniques, 2020, 4, 336-340.	0.2	5
11	Generation of a large-scale vascular bed for the inÂvitro creation of three-dimensional cardiac tissue. Regenerative Therapy, 2019, 11, 316-323.	1.4	13
12	Sticker method for preparation of frozen section using adhesive film. Journal of Neuroscience Methods, 2019, 328, 108436.	1.3	1
13	Mesenchymal Stem Cell Sheets Exert Antistenotic Effects in a Rat Arterial Injury Model. Tissue Engineering - Part A, 2018, 24, 1545-1553.	1.6	11
14	Three-dimensional functional human myocardial tissues fabricated from induced pluripotent stem cells. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 926-935.	1.3	54
15	Myoblast cell sheet transplantation enhances the endogenous regenerative abilities of infant hearts in rats with myocardial infarction. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1897-1906.	1.3	9
16	Local Release of VEGF Using Fiber Mats Enables Effective Transplantation of Layered Cardiomyocyte Sheets. Macromolecular Bioscience, 2017, 17, 1700073.	2.1	45
17	Tubular Cardiac Tissues Derived from Human Induced Pluripotent Stem Cells Generate Pulse Pressure In Vivo. Scientific Reports, 2017, 7, 45499.	1.6	48
18	TRPV-1-mediated elimination of residual iPS cells in bioengineered cardiac cell sheet tissues. Scientific Reports, 2016, 6, 21747.	1.6	35

HIDEKAZU SEKINE

#	Article	IF	CITATIONS
19	<i>In vivo</i> vascularization of cell sheets provided better long-term tissue survival than injection of cell suspension. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, 700-710.	1.3	38
20	Tracing behavior of endothelial cells promotes vascular network formation. Microvascular Research, 2016, 105, 125-131.	1.1	3
21	Ex Vivo Prefabricated Rat Skin Flap Using Cell Sheets and an Arteriovenous Vascular Bundle. Plastic and Reconstructive Surgery - Global Open, 2015, 3, e424.	0.3	6
22	Autologous Skeletal Myoblast Sheet Therapy for Porcine Myocardial Infarction without Increasing Risk of Arrhythmia. Cell Medicine, 2014, 6, 99-109.	5.0	18
23	In Vitro Engineering of Vascularized Tissue Surrogates. Scientific Reports, 2013, 3, 1316.	1.6	255
24	In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nature Communications, 2013, 4, 1399.	5.8	387
25	Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nature Protocols, 2012, 7, 850-858.	5.5	334
26	Myocardial tissue engineering: toward a bioartificial pump. Cell and Tissue Research, 2012, 347, 775-782.	1.5	23
27	Cardiac Cell Sheet Transplantation Improves Damaged Heart Function via Superior Cell Survival in Comparison with Dissociated Cell Injection. Tissue Engineering - Part A, 2011, 17, 2973-2980.	1.6	251
28	In vivo 3D analysis with micro-computed tomography of rat calvaria bone regeneration using periosteal cell sheets fabricated on temperature-responsive culture dishes. Journal of Tissue Engineering and Regenerative Medicine, 2011, 5, 483-490.	1.3	20
29	Cell Sheet-Based Myocardial Tissue Engineering: New Hope for Damaged Heart Rescue. Current Pharmaceutical Design, 2009, 15, 2807-2814.	0.9	106
30	Endothelial Cell Coculture Within Tissue-Engineered Cardiomyocyte Sheets Enhances Neovascularization and Improves Cardiac Function of Ischemic Hearts. Circulation, 2008, 118, S145-52.	1.6	357
31	Therapeutic Angiogenesis Using Tissue Engineered Human Smooth Muscle Cell Sheets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 637-643.	1.1	45
32	Functional closure of visceral pleural defects by autologous tissue engineered cell sheetsâ~†. European Journal of Cardio-thoracic Surgery, 2008, 34, 864-869.	0.6	51
33	Myocardial tissue reconstruction: The cell sheet engineering approach. Inflammation and Regeneration, 2007, 27, 171-176.	1.5	1
34	Reconstruction of functional tissues with cell sheet engineering. Biomaterials, 2007, 28, 5033-5043.	5.7	444
35	Dynamic sealing of lung air leaks by the transplantation of tissue engineered cell sheets. Biomaterials, 2007, 28, 4294-4302.	5.7	74
36	Grand Espoir: Robotics in Regenerative Medicine. Journal of Robotics and Mechatronics, 2007, 19, 500-505.	0.5	6

HIDEKAZU SEKINE

#	Article	IF	CITATIONS
37	Cell sheet engineering for regenerative medicine: From the viewpoint of inflammation. Inflammation and Regeneration, 2007, 27, 156-164.	1.5	6
38	Cardiomyocyte Bridging Between Hearts and Bioengineered Myocardial Tissues With Mesenchymal Transition of Mesothelial Cells. Journal of Heart and Lung Transplantation, 2006, 25, 324-332.	0.3	83
39	Cell delivery in regenerative medicine: The cell sheet engineering approach. Journal of Controlled Release, 2006, 116, 193-203.	4.8	197
40	Pulsatile Myocardial Tubes Fabricated With Cell Sheet Engineering. Circulation, 2006, 114, I-87-I-93.	1.6	117
41	Long-Term Survival and Growth of Pulsatile Myocardial Tissue Grafts Engineered by the Layering of Cardiomyocyte Sheets. Tissue Engineering, 2006, 12, 499-507.	4.9	206
42	Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB Journal, 2006, 20, 708-710.	0.2	457
43	Cell sheet engineering: Recreating tissues without biodegradable scaffolds. Biomaterials, 2005, 26, 6415-6422.	5.7	571