Masahito Ban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11957926/publications.pdf

Version: 2024-02-01

19	329	9	18
papers	citations	h-index	g-index
19	19	19	281
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Impedance Characteristics of Monolayer and Bilayer Graphene Films with Biofilm Formation and Growth. Sensors, 2022, 22, 3548.	3.8	3
2	Proliferation of mesenchymal stem cells by graphene-attached soft material structure. Diamond and Related Materials, 2021, 111, 108229.	3.9	3
3	Interconnection of Mesenchymal Stem Cells Using Regularly Arrayed Wrinkle Microstructures Fabricated by Diamond-like Carbon Thin Film Deposition. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2021, 72, 567-570.	0.2	1
4	Investigation of nanoplastic cytotoxicity using SH-SY5Y human neuroblastoma cells and polystyrene nanoparticles. Toxicology in Vitro, 2021, 76, 105225.	2.4	15
5	Trends of Antibacterial, Antivirus and Antibiofilm Surface Treatments. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2021, 72, 252-258.	0.2	3
6	Fabrication of arrayed microwells with wrinkle microstructure by ink-jet and diamond-like carbon thin film deposition process. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2019, 249, 114422.	3.5	2
7	Effects of diamond-like carbon thin film and wrinkle microstructure on cell proliferation. Diamond and Related Materials, 2018, 90, 194-201.	3.9	15
8	Partial formation of linear concavo-convex microstructure onto microwells by diamond-like carbon thin film deposition. Diamond and Related Materials, 2017, 74, 138-144.	3.9	5
9	Application of Carbon Nanomaterials to Biointerface. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2014, 65, 262-267.	0.2	O
10	Deposition of diamond-like carbon thin films containing photocatalytic titanium dioxide nanoparticles. Diamond and Related Materials, 2012, 25, 92-97.	3.9	10
11	Formation of Photosensitizing Crystalline C ₆₀ Particles by Ink-Jet Method. World Journal of Nano Science and Engineering, 2012, 02, 110-115.	0.3	3
12	Chemical resistance of DLC thin film deposited PMMA substrates. Surface and Coatings Technology, 2009, 203, 2587-2590.	4.8	13
13	Internal stress reduction by incorporation of silicon in diamond-like carbon films. Surface and Coatings Technology, 2003, 162, 1-5.	4.8	86
14	Stress and structural properties of diamond-like carbon films deposited by electron beam excited plasma CVD. Diamond and Related Materials, 2003, 12, 47-56.	3.9	62
15	Diamond-like carbon films deposited by electron beam excited plasma chemical vapor deposition. Diamond and Related Materials, 2002, 11, 1353-1359.	3.9	15
16	Tribological characteristics of Si-containing diamond-like carbon films under oil-lubrication. Wear, 2002, 253, 331-338.	3.1	68
17	Growth of microcrystalline silicon film by electron beam excited plasma chemical vapor deposition without hydrogen dilution. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 3134-3137.	2.1	15
18	SiO2 passivation film effects on microwave characteristics of YBa2Cu3O7â^'x-based resonators. Physica C: Superconductivity and Its Applications, 1997, 290, 345-353.	1.2	4

#	Article	IF	CITATIONS
19	Effect of Ar+O2P lasma Etching on Microwave Characteristics of YBa2Cu3O7-xBased Resonators. Japanese Journal of Applied Physics, 1996, 35, 4318-4321.	1.5	6