
Leandro Vinicius Alves Gurgel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/119579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integrated production of second-generation ethanol and biogas from sugarcane bagasse pretreated with ozone. Biomass Conversion and Biorefinery, 2022, 12, 809-825.	2.9	11
2	Pretreatment and enzymatic hydrolysis of coffee husk for the production of potentially fermentable sugars. Journal of Chemical Technology and Biotechnology, 2022, 97, 676-688.	1.6	2
3	Use of a new zwitterionic cellulose derivative for removal of crystal violet and orange II from aqueous solutions. Journal of Hazardous Materials, 2022, 424, 127401.	6.5	22
4	Batch and continuous adsorption of Cu(II) and Zn(II) ions from aqueous solution on bi-functionalized sugarcane-based biosorbent. Environmental Science and Pollution Research, 2022, 29, 26425-26448.	2.7	8
5	Application of Raw and Chemically Modified Biomasses for Heterogeneous Cu-Catalysed Conversion of Aryl boronic Acids to Phenols Derivatives. Catalysts, 2022, 12, 92.	1.6	2
6	Combination of High Solid Load, On-site Enzyme Cocktails and Surfactant in the hydrolysis of Hydrothermally Pretreated Sugarcane Bagasse and Ethanol Production. Waste and Biomass Valorization, 2022, 13, 3085-3094.	1.8	3
7	Multivariate optimization applied to the synthesis and reuse of a new sugarcane bagasse-based biosorbent to remove Cd(II) and Pb(II) from aqueous solutions. Environmental Science and Pollution Research, 2022, 29, 79954-79976.	2.7	2
8	Pretreatment of sugarcane bagasse with dilute citric acid and enzymatic hydrolysis: Use of black liquor and solid fraction for biogas production. Renewable Energy, 2022, 191, 428-438.	4.3	15
9	Biogas production by anaerobic co-digestion of sugarcane biorefinery byproducts: Comparative analyses of performance and microbial community in novel single-and two-stage systems. Bioresource Technology, 2022, 354, 127185.	4.8	14
10	Is anaerobic co-digestion the missing link to integrate sugarcane biorefinery?. Renewable Energy, 2022, 195, 488-496.	4.3	3
11	Application of pyridine-modified chitosan derivative for simultaneous adsorption of Cu(II) and oxyanions of Cr(VI) from aqueous solution. Journal of Environmental Management, 2021, 282, 111939.	3.8	15
12	Influence of hydrothermal pretreatment conditions, typology of anaerobic digestion system, and microbial profile in the production of volatile fatty acids from olive mill solid waste. Journal of Environmental Chemical Engineering, 2021, 9, 105055.	3.3	16
13	A review on the use of lignocellulosic materials for arsenic adsorption. Journal of Environmental Management, 2021, 288, 112397.	3.8	43
14	Production of biogas and fermentable sugars from spent brewery grains: Evaluation of one- and two-stage thermal pretreatment in an integrated biorefinery. Journal of Environmental Chemical Engineering, 2021, 9, 105960.	3.3	8
15	Lignocellulose-degrading enzymes production by solid-state fermentation through fungal consortium among Ascomycetes and Basidiomycetes. Renewable Energy, 2020, 145, 2683-2693.	4.3	40
16	2-Hydroxy-1,4-naphthoquinone (Lawsone) as a Redox Catalyst for the Improvement of the Alkaline Pretreatment of Sugarcane Bagasse. Energy & Fuels, 2020, 34, 16228-16239.	2.5	7
17	Iron recovery from the coarse fraction of basic oxygen furnace sludge. Part I: optimization of acid leaching conditions. Environmental Science and Pollution Research, 2020, 27, 40135-40147.	2.7	4
18	New Approach to Dehydration of Xylose to 2-Furfuraldehyde Using a Mesoporous Niobium-Based Catalyst. ACS Omega, 2020, 5, 21392-21400.	1.6	9

#	Article	IF	CITATIONS
19	Pretreatment of sugarcane bagasse using citric acid and its use in enzymatic hydrolysis. Renewable Energy, 2020, 157, 332-341.	4.3	34
20	Oxidized Renewable Materials for the Removal of Cobalt(II) and Copper(II) from Aqueous Solution Using in Batch and Fixed-Bed Column Adsorption. Advances in Polymer Technology, 2020, 2020, 1-17.	0.8	7
21	Pretreated Sugarcane Bagasse with Citric Acid Applied in Enzymatic Hydrolysis. Industrial Biotechnology, 2020, 16, 117-124.	0.5	6
22	Aminated cellulose as a versatile adsorbent for batch removal of As(V) and Cu(II) from mono- and multicomponent aqueous solutions. Journal of Colloid and Interface Science, 2020, 576, 158-175.	5.0	26
23	Fractionation of sugarcane bagasse using hydrothermal and advanced oxidative pretreatments for bioethanol and biogas production in lignocellulose biorefineries. Bioresource Technology, 2019, 292, 121963.	4.8	49
24	Trimellitated sugarcane bagasse: A versatile adsorbent for removal of cationic dyes from aqueous solution. Part II: Batch and continuous adsorption in a bicomponent system. Journal of Colloid and Interface Science, 2019, 552, 752-763.	5.0	17
25	Use of anaerobic co-digestion as an alternative to add value to sugarcane biorefinery wastes. Bioresource Technology, 2019, 287, 121443.	4.8	41
26	Synthesis and application of sugarcane bagasse cellulose mixed esters. Part II: Removal of Co2+ and Ni2+ from single spiked aqueous solutions in batch and continuous mode. Journal of Colloid and Interface Science, 2019, 552, 337-350.	5.0	8
27	Synthesis and application of sugarcane bagasse cellulose mixed esters. Part I: Removal of Co2+ and Ni2+ from single spiked aqueous solutions in batch mode using sugarcane bagasse cellulose succinate phthalate. Journal of Colloid and Interface Science, 2019, 533, 678-691.	5.0	15
28	Modeling adsorption of copper(II), cobalt(II) and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part II: Optimization of monocomponent fixed-bed column adsorption. Journal of Colloid and Interface Science, 2018, 516, 431-445.	5.0	84
29	Trimellitated sugarcane bagasse: A versatile adsorbent for removal of cationic dyes from aqueous solution. Part I: Batch adsorption in a monocomponent system. Journal of Colloid and Interface Science, 2018, 515, 172-188.	5.0	69
30	Data set on the bioprecipitation of sulfate and trivalent arsenic by acidophilic non-traditional sulfur reducing bacteria. Data in Brief, 2018, 17, 57-65.	0.5	1
31	Adsorption of diclofenac on a magnetic adsorbent based on maghemite: experimental and theoretical studies. New Journal of Chemistry, 2018, 42, 437-449.	1.4	63
32	Influence of different thermal pretreatments and inoculum selection on the biomethanation of sugarcane bagasse by solid-state anaerobic digestion: A kinetic analysis. Industrial Crops and Products, 2018, 111, 684-693.	2.5	63
33	Synthesis, characterisation and application of pyridine-modified chitosan derivatives for the first non-racemic Cu-catalysed Henry reaction. Carbohydrate Polymers, 2018, 181, 1206-1212.	5.1	15
34	Synthesis and application of a new carboxylated cellulose derivative. Part III: Removal of auramine-O and safranin-T from mono- and bi-component spiked aqueous solutions. Journal of Colloid and Interface Science, 2018, 512, 575-590.	5.0	34
35	Simultaneous removal of sulfate and arsenic using immobilized non-traditional SRB mixed culture and alternative low-cost carbon sources. Chemical Engineering Journal, 2018, 334, 1630-1641.	6.6	43
36	Production of biogas (methane and hydrogen) from anaerobic digestion of hemicellulosic hydrolysate generated in the oxidative pretreatment of coffee husks. Bioresource Technology, 2018, 263, 601-612.	4.8	45

3

#	Article	IF	CITATIONS
37	Bifunctionalized chitosan: A versatile adsorbent for removal of Cu(II) and Cr(VI) from aqueous solution. Carbohydrate Polymers, 2018, 201, 218-227.	5.1	30
38	New use for succinylated sugarcane bagasse containing adsorbed Cu2+ and Ni2+: Efficient catalysts for gas-phase n-hexane and n-heptane oxidation reactions. Industrial Crops and Products, 2017, 97, 649-652.	2.5	4
39	Optimization of cellulose and sugarcane bagasse oxidation: Application for adsorptive removal of crystal violet and auramine-O from aqueous solution. Journal of Colloid and Interface Science, 2017, 494, 223-241.	5.0	65
40	Anaerobic digestion of hemicellulose hydrolysate produced after hydrothermal pretreatment of sugarcane bagasse in UASB reactor. Science of the Total Environment, 2017, 584-585, 1108-1113.	3.9	48
41	Adsorption of red azo dyes on multi-walled carbon nanotubes and activated carbon: A thermodynamic study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 529, 531-540.	2.3	84
42	Methane and hydrogen production from anaerobic digestion of soluble fraction obtained by sugarcane bagasse ozonation. Industrial Crops and Products, 2017, 109, 288-299.	2.5	46
43	Synergistic action of an Aspergillus (hemi-)cellulolytic consortium on sugarcane bagasse saccharification. Industrial Crops and Products, 2017, 109, 173-181.	2.5	26
44	Steam explosion pretreatment improved the biomethanization of coffee husks. Bioresource Technology, 2017, 245, 66-72.	4.8	45
45	Two-stage fractionation of sugarcane bagasse by autohydrolysis and glycerol organosolv delignification in a lignocellulosic biorefinery concept. Industrial Crops and Products, 2017, 108, 431-441.	2.5	48
46	Synthesis and application of a new carboxylated cellulose derivative. Part II: Removal of Co2+, Cu2+ and Ni2+ from bicomponent spiked aqueous solution. Journal of Colloid and Interface Science, 2017, 487, 266-280.	5.0	14
47	Obtaining a New Carboxylated Derivative of Microcrystalline Cellulose: An Easy and Solvent-Free Synthesis. Revista Virtual De Quimica, 2017, 9, 431-451.	0.1	5
48	Evaluation of hydrogen and methane production from sugarcane bagasse hemicellulose hydrolysates by two-stage anaerobic digestion process. Bioresource Technology, 2016, 218, 436-446.	4.8	56
49	Ethanol–water organosolv delignification of liquid hot water (LHW) pretreated sugarcane bagasse enhanced by high–pressure carbon dioxide (HP–CO2). Industrial Crops and Products, 2016, 94, 942-950.	2.5	21
50	Synthesis and application of a new carboxylated cellulose derivative. Part I: Removal of Co 2+ , Cu 2+ and Ni 2+ from monocomponent spiked aqueous solution. Journal of Colloid and Interface Science, 2016, 483, 185-200.	5.0	38
51	Removal of cobalt(II), copper(II), and nickel(II) ions from aqueous solutions using phthalate-functionalized sugarcane bagasse: Mono- and multicomponent adsorption in batch mode. Industrial Crops and Products, 2016, 79, 116-130.	2.5	93
52	Application of a new bifunctionalized chitosan derivative with zwitterionic characteristics for the adsorption of Cu2+, Co2+, Ni2+, and oxyanions of Cr6+ from aqueous solutions: Kinetic and equilibrium aspects. Journal of Colloid and Interface Science, 2016, 466, 297-309.	5.0	64
53	Optimization of sugarcane bagasse autohydrolysis for methane production from hemicellulose hydrolyzates in a biorefinery concept. Bioresource Technology, 2016, 200, 137-146.	4.8	69
54	Activated carbons from agricultural byproducts (pine tree and coconut shell), coal, and carbon nanotubes as adsorbents for removal of sulfamethoxazole from spiked aqueous solutions: Kinetic and thermodynamic studies. Industrial Crops and Products, 2015, 74, 111-121.	2.5	115

#	Article	IF	CITATIONS
55	Modeling mono- and multi-component adsorption of cobalt(II), copper(II), and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part I: Batch adsorption study. Industrial Crops and Products, 2015, 74, 357-371.	2.5	89
56	Kinetic study of the thermal decomposition of cellulose nanocrystals with different polymorphs, cellulose I and II, extracted from different sources and using different types of acids. Industrial Crops and Products, 2015, 76, 128-140.	2.5	118
57	Application of a new carboxylate-functionalized sugarcane bagasse for adsorptive removal of crystal violet from aqueous solution: Kinetic, equilibrium and thermodynamic studies. Industrial Crops and Products, 2015, 65, 521-534.	2.5	87
58	Application of cellulose-immobilized riboflavin as a redox mediator for anaerobic degradation of a model azo dye Remazol Golden Yellow RNL. Industrial Crops and Products, 2015, 65, 454-462.	2.5	16
59	Enhancing liquid hot water (LHW) pretreatment of sugarcane bagasse by high pressure carbon dioxide (HP-CO2). Industrial Crops and Products, 2014, 57, 141-149.	2.5	52
60	Adsorption studies of etherdiamine onto modified sugarcane bagasses in aqueous solution. Journal of Environmental Management, 2014, 133, 332-342.	3.8	22
61	A new use for modified sugarcane bagasse containing adsorbed Co2+ and Cr3+: Catalytic oxidation of terpenes. Industrial Crops and Products, 2013, 50, 288-296.	2.5	12
62	Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: Kinetic and equilibrium aspects. Journal of Environmental Management, 2013, 118, 135-143.	3.8	122
63	Dilute Acid Hydrolysis of Sugar Cane Bagasse at High Temperatures: A Kinetic Study of Cellulose Saccharification and Glucose Decomposition. Part I: Sulfuric Acid as the Catalyst. Industrial & Engineering Chemistry Research, 2012, 51, 1173-1185.	1.8	73
64	Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions – Kinetic and equilibrium studies. Dyes and Pigments, 2012, 92, 967-974.	2.0	144
65	Characterization of depolymerized residues from extremely low acid hydrolysis (ELA) of sugarcane bagasse cellulose: Effects of degree of polymerization, crystallinity and crystallite size on thermal decomposition. Industrial Crops and Products, 2012, 36, 560-571.	2.5	49
66	Delignification of sugarcane bagasse using glycerol–water mixtures to produce pulps for saccharification. Bioresource Technology, 2011, 102, 10040-10046.	4.8	112
67	Removal of Ca(II) and Mg(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse grafted with EDTA dianhydride (EDTAD). Carbohydrate Polymers, 2010, 79, 184-191.	5.1	84
68	Removal of Zn2+ from aqueous single metal solutions and electroplating wastewater with wood sawdust and sugarcane bagasse modified with EDTA dianhydride (EDTAD). Journal of Hazardous Materials, 2010, 176, 856-863.	6.5	132
69	Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydrate Polymers, 2009, 77, 643-650.	5.1	201
70	Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by succinylated mercerized cellulose modified with triethylenetetramine. Carbohydrate Polymers, 2009, 77, 142-149.	5.1	121
71	Adsorption of chromium (VI) ion from aqueous solution by succinylated mercerized cellulose functionalized with quaternary ammonium groups. Bioresource Technology, 2009, 100, 3214-3220.	4.8	132
72	Adsorption of Cu(II), Cd(II) and Pb(II) from aqueous single metal solutions by succinylated twice-mercerized sugarcane bagasse functionalized with triethylenetetramine. Water Research, 2009, 43, 4479-4488.	5.3	188

#	Article	IF	CITATIONS
73	Removal of Zn2+ from Electroplating Wastewater Using Modified Wood Sawdust and Sugarcane Bagasse. Journal of Environmental Engineering, ASCE, 2009, 135, 341-350.	0.7	16
74	Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by cellulose and mercerized cellulose chemically modified with succinic anhydride. Bioresource Technology, 2008, 99, 3077-3083.	4.8	265
75	Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by sugarcane bagasse and mercerized sugarcane bagasse chemically modified with succinic anhydride. Carbohydrate Polymers, 2008, 74, 922-929.	5.1	171
76	Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Bioresource Technology, 2007, 98, 1291-1297.	4.8	342
77	On-site Produced Enzyme Cocktails for Saccharification and Ethanol Production from Sugarcane Bagasse Fractionated by Hydrothermal and Alkaline Pretreatments. Waste and Biomass Valorization, 0, , 1.	1.8	5