Charles D Searles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11957497/publications.pdf Version: 2024-02-01

CHADLES D SEADLES

#	Article	IF	CITATIONS
1	Cardiovascular Risk and Resilience Among Black Adults: Rationale and Design of the MECA Study. Journal of the American Heart Association, 2020, 9, e015247.	3.7	17
2	Individual Psychosocial Resilience, Neighborhood Context, and Cardiovascular Health in Black Adults. Circulation: Cardiovascular Quality and Outcomes, 2020, 13, e006638.	2.2	14
3	MicroRNA Detection Using a Double Molecular Beacon Approach: Distinguishing Between miRNA and Pre-miRNA. Theranostics, 2017, 7, 634-646.	10.0	30
4	Platelets confound the measurement of extracellular miRNA in archived plasma. Scientific Reports, 2016, 6, 32651.	3.3	84
5	Peroxisome Proliferator–Activated Receptor γ and microRNA 98 in Hypoxia-Induced Endothelin-1 Signaling. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 136-146.	2.9	40
6	Pleomorphic Structures in Human Blood Are Red Blood Cell-Derived Microparticles, Not Bacteria. PLoS ONE, 2016, 11, e0163582.	2.5	13
7	PPARÎ ³ Ligands Attenuate Hypoxia-Induced Proliferation in Human Pulmonary Artery Smooth Muscle Cells through Modulation of MicroRNA-21. PLoS ONE, 2015, 10, e0133391.	2.5	45
8	Detection and Assessment of MicroRNA Expression in Human Disease. RNA Technologies, 2015, , 333-349.	0.3	0
9	An accurate, precise method for general labeling of extracellular vesicles. MethodsX, 2015, 2, 360-367.	1.6	97
10	Identification of Therapeutic Covariant MicroRNA Clusters in Hypoxia-Treated Cardiac Progenitor Cell Exosomes Using Systems Biology. Circulation Research, 2015, 116, 255-263.	4.5	328
11	TNF-α alters the release and transfer of microparticle-encapsulated miRNAs from endothelial cells. Physiological Genomics, 2014, 46, 833-840.	2.3	62
12	MiRNA-155 targets myosin light chain kinase and modulates actin cytoskeleton organization in endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1192-H1203.	3.2	65
13	Shear sensitive microRNAs and atherosclerosis. Biorheology, 2014, 51, 147-158.	0.4	5
14	Using information theory to assess the communicative capacity of circulating microRNA. Biochemical and Biophysical Research Communications, 2013, 440, 1-7.	2.1	8
15	Coronary heart disease alters intercellular communication by modifying microparticleâ€mediated microRNA transport. FEBS Letters, 2013, 587, 3456-3463.	2.8	37
16	Hypoxia Mediates Mutual Repression between microRNA-27a and PPARÎ ³ in the Pulmonary Vasculature. PLoS ONE, 2013, 8, e79503.	2.5	53
17	The Use of Molecular Beacons to Detect and Quantify MicroRNA. Methods in Molecular Biology, 2013, 1039, 279-287.	0.9	17
18	In vitro quantification of specific microRNA using molecular beacons. Nucleic Acids Research, 2012, 40, e13-e13.	14.5	102

CHARLES D SEARLES

#	Article	IF	CITATIONS
19	Overexpression of mir181a protects against Ang II induced osteopontin expression in VSMC. FASEB Journal, 2012, 26, 1151.4.	0.5	0
20	Shearâ€responsive miRâ€155 Regulates Endothelial Cell Phenotype and Function. FASEB Journal, 2012, 26, 1151.7.	0.5	2
21	MicroRNA Expression Profile in CAD Patients and the Impact of ACEI/ARB. Cardiology Research and Practice, 2011, 2011, 1-5.	1.1	98
22	Laminar Shear Stress Modulates Phosphorylation and Localization of RNA Polymerase II on the Endothelial Nitric Oxide Synthase Gene. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 561-567.	2.4	12
23	MiR-21 is induced in endothelial cells by shear stress and modulates apoptosis and eNOS activity. Biochemical and Biophysical Research Communications, 2010, 393, 643-648.	2.1	348
24	Molecular beacons can assess changes in expression and 3′-polyadenylation of human eNOS mRNA. American Journal of Physiology - Cell Physiology, 2009, 296, C498-C504.	4.6	8
25	Statin Treatment and 3′ Polyadenylation of eNOS mRNA. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 2642-2649.	2.4	64
26	Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression. American Journal of Physiology - Cell Physiology, 2006, 291, C803-C816.	4.6	171
27	Laminar Shear Stress and 3′ Polyadenylation of eNOS mRNA. Circulation Research, 2005, 96, 1161-1168.	4.5	50
28	Actin Cytoskeleton Organization and Posttranscriptional Regulation of Endothelial Nitric Oxide Synthase During Cell Growth. Circulation Research, 2004, 95, 488-495.	4.5	66
29	The Nitric Oxide Pathway and Oxidative Stress in Heart Failure. Congestive Heart Failure, 2002, 8, 142-155.	2.0	26
30	Posttranscriptional Regulation of Endothelial Nitric Oxide Synthase During Cell Growth. Circulation Research, 1999, 85, 588-595.	4.5	72
31	The effect of aluminum on markers for synaptic neurotransmission, cyclic AMP, and neurofilaments in a neuroblastoma × glioma hybridoma (NG108-15). Brain Research, 1990, 528, 73-79.	2.2	17
32	Effects of anticonvulsants on cholinergic and GABAergic properties in the neuronal cell clone NG108-15. Neurochemical Research, 1988, 13, 1007-1013.	3.3	3
33	The identification and characterization of a GABAergic system in the cholinergic neuroblastoma x glioma hybrid clone NG108-15. Brain Research, 1988, 448, 373-376.	2.2	11