Roya Khosravi-Far

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11953829/publications.pdf

Version: 2024-02-01

49 papers

5,399 citations

30 h-index 206029 48 g-index

67 all docs

67
docs citations

67 times ranked

6362 citing authors

#	Article	IF	CITATIONS
1	Aggregation determines the selectivity of membrane-active anticancer and antimicrobial peptides: The case of killerFLIP. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183107.	1.4	26
2	Viral Transportation in COVID-19 Pandemic: Inactivated Virus Transportation Should Be Implemented for Safe Transportation and Handling at Diagnostics Laboratories. Archives of Pathology and Laboratory Medicine, 2020, 144, 916-917.	1.2	11
3	A Peroxidase Peroxiredoxin 1-Specific Redox Regulation of the Novel FOXO3 microRNA Target let-7. Antioxidants and Redox Signaling, 2018, 28, 62-77.	2.5	48
4	Changes in membrane lipids drive increased endocytosis following Fas ligation. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 681-695.	2.2	9
5	A novel caspase 8 selective small molecule potentiates TRAIL-induced cell death. Scientific Reports, 2015, 5, 9893.	1.6	20
6	PLK1 is a binding partner and a negative regulator of FOXO3 tumor suppressor. Discoveries, 2014, 2, e16.	1.5	22
7	Ser81 Survivin Induced Protein Kinase A (PKA)-dependent Phosphatidylinositol 3-kinase (PI3K) Activity. Indonesian Biomedical Journal, 2014, 6, 157.	0.2	2
8	Poor antibody validation is a challenge in biomedical research: a case study for detection of c-FLIP. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 1154-1162.	2.2	17
9	Combination of Bortezomib and Mitotic Inhibitors Down-Modulate Bcr-Abl and Efficiently Eliminates Tyrosine-Kinase Inhibitor Sensitive and Resistant Bcr-Abl-Positive Leukemic Cells. PLoS ONE, 2013, 8, e77390.	1.1	22
10	Apoptotic cell signaling in cancer progression and therapy. Integrative Biology (United Kingdom), 2011, 3, 279-296.	0.6	234
11	Bortezomib treatment causes remission in a Ph+ALL patient and reveals FoxO as a theranostic marker. Cancer Biology and Therapy, $2011, 11, 552-558$.	1.5	22
12	Phosphorylated-Survivin at Ser81 Induced Protein Kinase A (PKA): A Back Loop. Indonesian Biomedical Journal, 2011, 3, 138.	0.2	2
13	Protein Phosphatase 2A Reactivates FOXO3a through a Dynamic Interplay with 14-3-3 and AKT. Molecular Biology of the Cell, 2010, 21, 1140-1152.	0.9	100
14	Survivin S81A Enhanced TRAIL's Activity in Inducing Apoptosis. Indonesian Biomedical Journal, 2010, 2, 113.	0.2	4
15	Proteasome Inhibition Causes Regression of Leukemia and Abrogates BCR-ABL–Induced Evasion of Apoptosis in Part through Regulation of Forkhead Tumor Suppressors. Cancer Research, 2009, 69, 6546-6555.	0.4	50
16	A Double Hit to Kill Tumor and Endothelial Cells by TRAIL and Antiangiogenic 3TSR. Cancer Research, 2009, 69, 3856-3865.	0.4	46
17	Fas Death Receptor Enhances Endocytic Membrane Traffic Converging into the Golgi Region. Molecular Biology of the Cell, 2009, 20, 600-615.	0.9	24
18	Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induced mitochondrial pathway to apoptosis and caspase activation is potentiated by phospholipid scramblase-3. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 845-856.	2.2	38

#	Article	IF	CITATIONS
19	Dysregulation of apoptotic signaling in cancer: Molecular mechanisms and therapeutic opportunities. Journal of Cellular Biochemistry, 2008, 104, 1124-1149.	1.2	186
20	FoxO tumor suppressors and BCR–ABL-induced leukemia: A matter of evasion of apoptosis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2008, 1785, 63-84.	3.3	51
21	The Mitochondrial Death Pathway. Advances in Experimental Medicine and Biology, 2008, 615, 25-45.	0.8	86
22	Apoptotic Pathways in Tumor Progression and Therapy. Advances in Experimental Medicine and Biology, 2008, 615, 47-79.	0.8	77
23	Chapter 19 Analysis of Tnfâ€Related Apoptosisâ€Inducing Ligand In Vivo Through Bone Marrow Transduction and Transplantation. Methods in Enzymology, 2008, 446, 315-331.	0.4	3
24	Endosomal compartment contributes to the propagation of CD95/Fas-mediated signals in typeÂII cells. Biochemical Journal, 2008, 413, 467-478.	1.7	27
25	Programmed Cell Death in Cancer Progression and Therapy. Advances in Experimental Medicine and Biology, 2008, , .	0.8	5
26	c-Fos as a Proapoptotic Agent in TRAIL-Induced Apoptosis in Prostate Cancer Cells. Cancer Research, 2007, 67, 9425-9434.	0.4	85
27	Neuropilin-1 Modulates p53/Caspases Axis to Promote Endothelial Cell Survival. PLoS ONE, 2007, 2, e1161.	1.1	60
28	Regulation of tumor angiogenesis by thrombospondin-1. Biochimica Et Biophysica Acta: Reviews on Cancer, 2006, 1765, 178-188.	3.3	154
29	Transduction of Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand into Hematopoietic Cells Leads to Inhibition of Syngeneic Tumor Growth In vivo. Cancer Research, 2006, 66, 6304-6311.	0.4	32
30	Pro-apoptotic Bid induces membrane perturbation by inserting selected lysolipids into the bilayer. Biochemical Journal, 2005, 387, 109-118.	1.7	50
31	Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Alters Mitochondrial Membrane Lipids. Cancer Research, 2005, 65, 8286-8297.	0.4	40
32	Persistent c-FLIP(L) Expression Is Necessary and Sufficient to Maintain Resistance to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand–Mediated Apoptosis in Prostate Cancer. Cancer Research, 2004, 64, 7086-7091.	0.4	139
33	Fas-associated Protein with Death Domain (FADD)-independent Recruitment of c-FLIPL to Death Receptor 5. Journal of Biological Chemistry, 2004, 279, 55594-55601.	1.6	31
34	Death receptor signals to the mitochondria. Cancer Biology and Therapy, 2004, 3, 1051-1057.	1.5	168
35	Cytokines and BCR-ABL mediate suppression of TRAIL-induced apoptosis through inhibition of forkhead FOXO3a transcription factor. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 6523-6528.	3.3	136
36	Role of Protein Kinase Cζ in Ras-mediated Transcriptional Activation of Vascular Permeability Factor/Vascular Endothelial Growth Factor Expression. Journal of Biological Chemistry, 2001, 276, 2395-2403.	1.6	66

#	Article	IF	CITATIONS
37	The Complexity of TNFâ∈Related Apoptosisâ∈Inducing Ligand. Annals of the New York Academy of Sciences, 2000, 926, 52-63.	1.8	75
38	Differential contribution of the ERK and JNK mitogen-activated protein kinase cascades to Ras transformation of HT1080 fibrosarcoma and DLD-1 colon carcinoma cells. Oncogene, 1999, 18, 1807-1817.	2.6	50
39	Increasing complexity of Ras signaling. Oncogene, 1998, 17, 1395-1413.	2.6	977
40	Rho family proteins and Ras transformation: the RHOad less traveled gets congested. Oncogene, 1998, 17, 1415-1438.	2.6	337
41	Increasing Complexity of Ras Signal Transduction: Involvement of Rho Family Proteins. Advances in Cancer Research, 1997, 72, 57-107.	1.9	150
42	Daxx, a Novel Fas-Binding Protein That Activates JNK and Apoptosis. Cell, 1997, 89, 1067-1076.	13.5	878
43	Expression Cloning of lsc, a Novel Oncogene with Structural Similarities to the Dbl Family of Guanine Nucleotide Exchange Factors. Journal of Biological Chemistry, 1996, 271, 18643-18650.	1.6	74
44	Ras Interaction with Two Distinct Binding Domains in Raf-1 5 Be Required for Ras Transformation. Journal of Biological Chemistry, 1996, 271, 233-237.	1.6	136
45	[6] Prenylation analysis of bacterially expressed and insect cell-expressed Ras and Ras-related proteins. Methods in Enzymology, 1995, 255, 46-60.	0.4	12
46	Guanine nucleotide exchange factors: Activators of Ras superfamily proteins. Molecular Reproduction and Development, 1995, 42, 468-476.	1.0	70
47	Guanine nucleotide exchange factors: Activators of the Ras superfamily of proteins. BioEssays, 1995, 17, 395-404.	1.2	205
48	The Ras signal transduction pathway. Cancer and Metastasis Reviews, 1994, 13, 67-89.	2.7	342
49	Physiologic and Pathological Cell Death in the Mammary Gland. , 0, , 250-272.		0