Malisa Sarntinoranont

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11953811/publications.pdf

Version: 2024-02-01

331259 288905 1,677 57 21 40 citations h-index g-index papers 57 57 57 1947 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Experimental and Computational Models of Transport of Galectin-3 Through Glycosylated Matrix. Annals of Biomedical Engineering, 2022, , $1.$	1.3	O
2	Estimation of shear stress values along endothelial tip cells past the lumen of capillary sprouts. Microvascular Research, 2022, 142, 104360.	1.1	4
3	Biomimetic Models of the Microcirculation for Scientific Discovery and Therapeutic Testing., 2021,, 1-23.		O
4	Imaging acute effects of bevacizumab on tumor vascular kinetics in a preclinical orthotopic model of U251 glioma. NMR in Biomedicine, 2021, 34, e4516.	1.6	7
5	Computational Evaluation of Wall Shear Stress Experienced by Endothelial Tip Cells along Capillary Sprouts. FASEB Journal, 2021, 35, .	0.2	О
6	A computational model of glioma reveals opposing, stiffness-sensitive effects of leaky vasculature and tumor growth on tissue mechanical stress and porosity. Biomechanics and Modeling in Mechanobiology, 2021, 20, 1981-2000.	1.4	3
7	Label-free quantification of soft tissue alignment by polarized Raman spectroscopy. Acta Biomaterialia, 2021, 136, 363-374.	4.1	4
8	Biomimetic Models of the Microcirculation for Scientific Discovery and Therapeutic Testing. Reference Series in Biomedical Engineering, 2021, , 321-342.	0.1	0
9	Raman Spectroscopy Methods to Characterize the Mechanical Response of Soft Biomaterials. Biomacromolecules, 2020, 21, 3485-3497.	2.6	10
10	An MRI-based switched gradient impulse response characterization method with uniform eigenmode excitation. Journal of Magnetic Resonance, 2020, 313, 106720.	1.2	0
11	Cochlear basal turn patency in unrecognized perilymph gushers. International Journal of Pediatric Otorhinolaryngology, 2019, 126, 109601.	0.4	4
12	MRI of Whole Rat Brain Perivascular Network Reveals Role for Ventricles in Brain Waste Clearance. Scientific Reports, 2019, 9, 11480.	1.6	21
13	Pharmacokinetic Models of Convection-Enhanced Drug Delivery. , 2019, , 111-132.		O
14	Biphasic analysis of rat brain slices under creep indentation shows nonlinear tension-compression behavior. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 89, 1-8.	1.5	13
15	Phase contrast MRI of creeping flows using stimulated echo. Journal of Magnetic Resonance, 2019, 299, 49-58.	1.2	12
16	Longitudinal evaluation of tumor microenvironment in rat focal brainstem glioma using diffusion and perfusion MRI. Journal of Magnetic Resonance Imaging, 2019, 49, 1322-1332.	1.9	2
17	Pulsatile flow drivers in brain parenchyma and perivascular spaces: a resistance network model study. Fluids and Barriers of the CNS, 2018, 15, 20.	2.4	55
18	Controlled single bubble cavitation collapse results in jet-induced injury in brain tissue. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 74, 261-273.	1.5	25

#	Article	IF	Citations
19	Simulated blast overpressure induces specific astrocyte injury in an ex vivo brain slice model. PLoS ONE, 2017, 12, e0175396.	1.1	15
20	Voxelized Model of Brain Infusion That Accounts for Small Feature Fissures: Comparison With Magnetic Resonance Tracer Studies. Journal of Biomechanical Engineering, 2016, 138, 051007.	0.6	15
21	Convection-enhanced delivery to the central nervous system. Journal of Neurosurgery, 2015, 122, 697-706.	0.9	167
22	MRI-Based Computational Model of Heterogeneous Tracer Transport following Local Infusion into a Mouse Hind Limb Tumor. PLoS ONE, 2014, 9, e89594.	1.1	23
23	Effect of Needle Insertion Speed on Tissue Injury, Stress, and Backflow Distribution for Convection-Enhanced Delivery in the Rat Brain. PLoS ONE, 2014, 9, e94919.	1.1	68
24	In vivo evaluation of needle force and friction stress during insertion at varying insertion speed into the brain. Journal of Neuroscience Methods, 2014, 237, 79-89.	1.3	70
25	Influence of Neuropathology on Convection-Enhanced Delivery in the Rat Hippocampus. PLoS ONE, 2013, 8, e80606.	1.1	3
26	Influence of Needle Insertion Speed on Backflow for Convection-Enhanced Delivery. Journal of Biomechanical Engineering, 2012, 134, 041006.	0.6	32
27	Evaluation of a Voxelized Model Based on DCE-MRI for Tracer Transport in Tumor. Journal of Biomechanical Engineering, 2012, 134, 091004.	0.6	20
28	Voxelized Computational Model for Convection-Enhanced Delivery in the Rat Ventral Hippocampus: Comparison with In Vivo MR Experimental Studies. Annals of Biomedical Engineering, 2012, 40, 2043-2058.	1.3	26
29	High-Strain-Rate Brain Injury Model Using Submerged Acute Rat Brain Tissue Slices. Journal of Neurotrauma, 2012, 29, 418-429.	1.7	34
30	Role of convection and diffusion on DCE-MRI parameters in low leakiness KHT sarcomas. Microvascular Research, 2012, 84, 306-313.	1.1	16
31	A Preclinical Assessment of Neural Stem Cells as Delivery Vehicles for Anti-Amyloid Therapeutics. PLoS ONE, 2012, 7, e34097.	1.1	24
32	Polymer-coated cannulas for the reduction of backflow during intraparenchymal infusions. Journal of Materials Science: Materials in Medicine, 2012, 23, 2037-2046.	1.7	19
33	Dynamic contrast-enhanced MRI of Gd-albumin delivery to the rat hippocampus in vivo by convection-enhanced delivery. Journal of Neuroscience Methods, 2012, 209, 62-73.	1.3	13
34	Design Considerations for Developing Biodegradable Magnesium Implants. , 2011, , 401-401.		0
35	Sensitivity Analysis of an Image-Based Solid Tumor Computational Model with Heterogeneous Vasculature and Porosity. Annals of Biomedical Engineering, 2011, 39, 2360-2373.	1.3	84
36	In Vivo Contrast-Enhanced MR Imaging of Direct Infusion into Rat Peripheral Nerves. Annals of Biomedical Engineering, 2011, 39, 2823-2834.	1.3	10

#	Article	IF	Citations
37	Design considerations for developing biodegradable and bioabsorbable magnesium implants. Jom, 2011, 63, 100-104.	0.9	14
38	A voxelized model of direct infusion into the corpus callosum and hippocampus of the rat brain: model development and parameter analysis. Medical and Biological Engineering and Computing, 2010, 48, 203-214.	1.6	20
39	Regional convection-enhanced delivery of gadolinium-labeled albumin in the rat hippocampus in vivo. Journal of Neuroscience Methods, 2010, 187, 129-137.	1.3	23
40	Mechanical Response of Living Cells to Contacting Shear Forces. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2010, , 125-141.	0.7	0
41	Development of a magneto-hydrodynamic solver for anatomical models. Digest / IEEE Antennas and Propagation Society International Symposium, 2009, , .	0.0	O
42	Voxelized Model of Interstitial Transport in the Rat Spinal Cord Following Direct Infusion Into White Matter. Journal of Biomechanical Engineering, 2009, 131, 071007.	0.6	17
43	Characterization of an anisotropic hydrogel tissue substrate for infusion testing. Journal of Applied Polymer Science, 2009, 114, 1992-2002.	1.3	16
44	Magnesium as a biodegradable and bioabsorbable material for medical implants. Jom, 2009, 61, 31-34.	0.9	206
45	Mechanical characterization of contact lenses by microindentation: Constant velocity and relaxation testing. Acta Biomaterialia, 2008, 4, 1560-1568.	4.1	18
46	Friction Coefficient Measurement of Hydrogel Materials on Living Epithelial Cells. Tribology Letters, 2008, 30, 13-19.	1.2	61
47	Quantitative assessment of macromolecular concentration during direct infusion into an agarose hydrogel phantom using contrast-enhanced MRI. Magnetic Resonance Imaging, 2008, 26, 1433-1441.	1.0	43
48	Determination of Macromolecular Concentration Following Direct Infusion into Hydrogel using Contrast-Enhanced MRI. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 2887-90.	0.5	0
49	Voxelized Model of Interstitial Transport in Nervous Tissue Following Direct Infusion into White Matter. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, 2007, 2114-7.	0.5	O
50	A Biphasic Model for Micro-Indentation of a Hydrogel-Based Contact Lens. Journal of Biomechanical Engineering, 2007, 129, 156-163.	0.6	38
51	Effect of heterogeneous vasculature on interstitial transport within a solid tumor. Microvascular Research, 2007, 73, 224-236.	1.1	98
52	Hydraulic permeability of a hydrogel-based contact lens membrane for low flow rates. Journal of Applied Polymer Science, 2007, 104, 3730-3735.	1.3	7
53	Biphasic Finite Element Model of Solute Transport for Direct Infusion into Nervous Tissue. Annals of Biomedical Engineering, 2007, 35, 2145-2158.	1.3	54
54	Computational Model of Interstitial Transport in the Spinal Cord using Diffusion Tensor Imaging. Annals of Biomedical Engineering, 2006, 34, 1304-1321.	1.3	65

#	Article	IF	CITATIONS
55	A Computational Model of Direct Interstitial Infusion of Macromolecules into the Spinal Cord. Annals of Biomedical Engineering, 2003, 31, 448-461.	1.3	49
56	Interstitial Stress and Fluid Pressure Within a Growing Tumor. Annals of Biomedical Engineering, 2003, 31, 327-335.	1.3	134
57	Direct interstitial infusion of NK $<$ sub $>1sub>-targeted neurotoxin into the spinal cord: a computational model. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 285, R243-R254.$	0.9	15