
Anvar Gilmanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11953664/publications.pdf Version: 2024-02-01

ANVAD CILMANOV

#	Article	IF	CITATIONS
1	A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. Journal of Computational Physics, 2005, 207, 457-492.	3.8	474
2	Fluid Mechanics of Heart Valves and Their Replacements. Annual Review of Fluid Mechanics, 2016, 48, 259-283.	25.0	103
3	A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. Journal of Computational Physics, 2015, 300, 814-843.	3.8	99
4	A hybrid immersed boundary and material point method for simulating 3D fluid–structure interaction problems. International Journal for Numerical Methods in Fluids, 2008, 56, 2151-2177.	1.6	61
5	Flow simulations in arbitrarily complex cardiovascular anatomies – An unstructured Cartesian grid approach. Computers and Fluids, 2009, 38, 1749-1762.	2.5	48
6	Comparative hemodynamics in an aorta with bicuspid and trileaflet valves. Theoretical and Computational Fluid Dynamics, 2016, 30, 67-85.	2.2	33
7	A computational strategy for simulating heat transfer and flow past deformable objects. International Journal of Heat and Mass Transfer, 2008, 51, 4415-4426.	4.8	26
8	Flow–Structure Interaction Simulations of the Aortic Heart Valve at Physiologic Conditions: The Role of Tissue Constitutive Model. Journal of Biomechanical Engineering, 2018, 140, .	1.3	19
9	Non-linear rotation-free shell finite-element models for aortic heart valves. Journal of Biomechanics, 2017, 50, 56-62.	2.1	18
10	Nonlinear rotationâ€free threeâ€node shell finite element formulation. International Journal for Numerical Methods in Engineering, 2013, 95, 740-770.	2.8	17
11	Image-Guided Fluid-Structure Interaction Simulation of Transvalvular Hemodynamics: Quantifying the Effects of Varying Aortic Valve Leaflet Thickness. Fluids, 2019, 4, 119.	1.7	16
12	Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures. Computer Methods in Applied Mechanics and Engineering, 2018, 335, 298-326.	6.6	7
13	The Effect of Modifying a CFD-AB Approach on Fish Passage through a Model Hydraulic Dam. Water (Switzerland), 2019, 11, 1776.	2.7	6
14	Coupling the Curvilinear Immersed Boundary Method with Rotation-Free Finite Elements for Simulating Fluid–Structure Interaction: Concepts and Applications. Computational Methods in Engineering & the Sciences, 2020, , 107-138.	0.3	0