Laura Pérez-Lago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/119534/publications.pdf

Version: 2024-02-01

		567281	434195
50	1,125	15	31
papers	citations	h-index	g-index
Fa	5 2	5 2	2274
52	52	52	2374
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Recurrences of multidrugâ€resistant tuberculosis: Strains involved, withinâ€host diversity, and fineâ€tuned allocation of reinfections. Transboundary and Emerging Diseases, 2022, 69, 327-336.	3.0	6
2	Systematic Genomic and Clinical Analysis of Severe Acute Respiratory Syndrome Coronavirus 2 Reinfections and Recurrences Involving the Same Strain. Emerging Infectious Diseases, 2022, 28, 86-95.	4.3	8
3	Insights into the Complexity of a Dormant <i>Mycobacterium tuberculosis</i> Cluster Once Transmission Is Resumed. Microbiology Spectrum, 2022, 10, e0138121.	3.0	0
4	Probable longâ€ŧerm prevalence for a predominant <i>Mycobacterium tuberculosis</i> clone of a Beijing genotype in Colon, Panama. Transboundary and Emerging Diseases, 2021, 68, 2229-2238.	3.0	2
5	Inference of Active Viral Replication in Cases with Sustained Positive Reverse Transcription-PCR Results for SARS-CoV-2. Journal of Clinical Microbiology, 2021, 59, .	3.9	27
6	Epidemiological, clinical and genomic snapshot of the first 100 B.1.1.7 SARS-CoV-2 cases in Madrid. Journal of Travel Medicine, 2021, 28, .	3.0	3
7	Different dynamics of mean SARSâ€CoVâ€2 RTâ€PCR Ct values between the first and second COVIDâ€19 waves in the Madrid population. Transboundary and Emerging Diseases, 2021, 68, 3103-3106.	n 3.0	12
8	Overlapping prison/community tuberculosis outbreaks in Costa Rica revealed by alternative analysis of suboptimal material. Transboundary and Emerging Diseases, 2021, , .	3.0	0
9	Integrative transnational analysis to dissect tuberculosis transmission events along the migratory route from Africa to Europe. Journal of Travel Medicine, 2021, 28, .	3.0	7
10	High within-host diversity found from direct genotyping on post-mortem tuberculosis specimens in a high-burden setting. Clinical Microbiology and Infection, 2021, 27, 1518.e5-1518.e9.	6.0	0
11	Spread of a SARS-CoV-2 variant through Europe in the summer of 2020. Nature, 2021, 595, 707-712.	27.8	363
12	Different Within-Host Viral Evolution Dynamics in Severely Immunosuppressed Cases with Persistent SARS-CoV-2. Biomedicines, 2021, 9, 808.	3.2	28
13	The first wave of the COVID-19 epidemic in Spain was associated with early introductions and fast spread of a dominating genetic variant. Nature Genetics, 2021, 53, 1405-1414.	21.4	35
14	Expanded tracking of a Beijing Mycobacterium tuberculosis strain involved in an outbreak in France. Travel Medicine and Infectious Disease, 2021, 44, 102167.	3.0	2
15	SARSâ€CoVâ€2 superinfection and reinfection with three different strains. Transboundary and Emerging Diseases, 2021, , .	3.0	6
16	Detection of Minority Variants and Mixed Infections in Mycobacterium tuberculosis by Direct Whole-Genome Sequencing on Noncultured Specimens Using a Specific-DNA Capture Strategy. MSphere, 2021, 6, e0074421.	2.9	8
17	Exportation of MDR TB to Europe from Setting with Actively Transmitted Persistent Strains in Peru. Emerging Infectious Diseases, 2019, 25, 596-598.	4.3	7
18	Simplified Model to Survey Tuberculosis Transmission in Countries Without Systematic Molecular Epidemiology Programs. Emerging Infectious Diseases, 2019, 25, 507-514.	4.3	5

#	Article	IF	Citations
19	A Mycobacterium tuberculosis Beijing strain persists at high rates and extends its geographic boundaries 20 years after importation. Scientific Reports, 2019, 9, 4687.	3.3	11
20	A Case-Control Study of Real-Life Experience with Ceftolozane-Tazobactam in Patients with Hematologic Malignancy and Pseudomonas aeruginosa Infection. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	34
21	Whole genome sequencing–based analysis of tuberculosis (TB) in migrants: rapid tools for cross-border surveillance and to distinguish between recent transmission in the host country and new importations. Eurosurveillance, 2019, 24, .	7.0	22
22	Trends of Two Epidemic Multidrug-Resistant Strains of Mycobacterium tuberculosis in Argentina Disclosed by Tailored Molecular Strategy. American Journal of Tropical Medicine and Hygiene, 2019, 101, 1308-1311.	1.4	9
23	The Evolution of Genotyping Strategies To Detect, Analyze, and Control Transmission of Tuberculosis. Microbiology Spectrum, 2018, 6, .	3.0	14
24	Mycobacterium tuberculosis Acquires Limited Genetic Diversity in Prolonged Infections, Reactivations and Transmissions Involving Multiple Hosts. Frontiers in Microbiology, 2018, 8, 2661.	3.5	12
25	A deletion hampering appropriate typing of Mycobacterium africanum. Tuberculosis, 2017, 103, 24-27.	1.9	0
26	Clonal Complexity in Mycobacterium tuberculosis Can Hamper Diagnostic Procedures. Journal of Clinical Microbiology, 2017, 55, 1388-1395.	3.9	3
27	Diagnostic performance of Anyplex II MTB/MDR/XDR for detection of resistance to first and second line drugs in Mycobacterium tuberculosis. Journal of Microbiological Methods, 2017, 139, 74-78.	1.6	7
28	Equatorial Guinea, a multidrug-resistant tuberculosis hotspot in Central Africa. European Respiratory Journal, 2017, 49, 1600952.	6.7	1
29	In-Depth Characterization and Functional Analysis of Clonal Variants in a Mycobacterium tuberculosis Strain Prone to Microevolution. Frontiers in Microbiology, 2017, 8, 694.	3.5	11
30	Optimizing and accelerating the assignation of lineages in Mycobacterium tuberculosis using novel alternative single-tube assays. PLoS ONE, 2017, 12, e0186956.	2.5	7
31	Subtle genotypic changes can be observed soon after diagnosis in Mycobacterium tuberculosis infection. International Journal of Medical Microbiology, 2016, 306, 401-405.	3.6	5
32	Urgent Implementation in a Hospital Setting of a Strategy To Rule Out Secondary Cases Caused by Imported Extensively Drug-Resistant Mycobacterium tuberculosis Strains at Diagnosis. Journal of Clinical Microbiology, 2016, 54, 2969-2974.	3.9	15
33	Ultrafast Assessment of the Presence of a High-Risk Mycobacterium tuberculosis Strain in a Population. Journal of Clinical Microbiology, 2016, 54, 779-781.	3.9	18
34	Co-infection with Drug-Susceptible and Reactivated Latent Multidrug-Resistant <i>Mycobacterium tuberculosis</i> . Emerging Infectious Diseases, 2015, 21, 2098-2100.	4.3	15
35	Persistent Infection by a Mycobacterium tuberculosis Strain That Was Theorized To Have Advantageous Properties, as It Was Responsible for a Massive Outbreak. Journal of Clinical Microbiology, 2015, 53, 3423-3429.	3.9	21
36	Whole Genome Sequencing Analysis of Intrapatient Microevolution in Mycobacterium tuberculosis: Potential Impact on the Inference of Tuberculosis Transmission. Journal of Infectious Diseases, 2014, 209, 98-108.	4.0	120

#	Article	IF	CITATIONS
37	Current knowledge and pending challenges in zoonosis caused by Mycobacterium bovis: A review. Research in Veterinary Science, 2014, 97, S94-S100.	1.9	69
38	Genetic features shared by Mycobacterium tuberculosis strains involved in microevolution events. Infection, Genetics and Evolution, 2013, 16, 326-329.	2.3	3
39	Differences in gene expression between clonal variants of Mycobacterium tuberculosis emerging as a result of microevolution. International Journal of Medical Microbiology, 2013, 303, 674-677.	3.6	26
40	Unmasking subtle differences in the infectivity of microevolved Mycobacterium tuberculosis variants coinfecting the same patient. International Journal of Medical Microbiology, 2013, 303, 693-696.	3.6	13
41	Functional Specificity of a Protein-DNA Complex Mediated by Two Arginines Bound to the Minor Groove. Journal of Bacteriology, 2012, 194, 4727-4735.	2.2	4
42	Dynamic and complex Mycobacterium tuberculosis microevolution unrevealed by standard genotyping. Tuberculosis, 2012, 92, 232-235.	1.9	4
43	Characterization of <i>Bacillus subtilis</i> uracilâ€DNA glycosylase and its inhibition by phage φ29 protein p56. Molecular Microbiology, 2011, 80, 1657-1666.	2.5	12
44	Systematic Survey of Clonal Complexity in Tuberculosis at a Populational Level and Detailed Characterization of the Isolates Involved. Journal of Clinical Microbiology, 2011, 49, 4131-4137.	3.9	52
45	Characterization of Microevolution Events in Mycobacterium tuberculosis Strains Involved in Recent Transmission Clusters. Journal of Clinical Microbiology, 2011, 49, 3771-3776.	3.9	35
46	Novel dimeric structure of phage ϕ29-encoded protein p56: insights into uracil-DNA glycosylase inhibition. Nucleic Acids Research, 2011, 39, 9779-9788.	14.5	15
47	DNA sequence-specific recognition by a transcriptional regulator requires indirect readout of A-tracts. Nucleic Acids Research, 2007, 35, 3252-3261.	14.5	10
48	The Structure of Phage i-29 Transcription Regulator p4-DNA Complex Reveals an N-Hook Motif for DNA Binding. Molecular Cell, 2006, 22, 73-81.	9.7	15
49	Homologies and Divergences in the Transcription Regulatory System of Two Related Bacillus subtilis Phages. Journal of Bacteriology, 2005, 187, 6403-6409.	2.2	4
50	A precise DNA bend angle is essential for the function of the phage Â29 transcriptional regulator. Nucleic Acids Research, 2005, 33, 126-134.	14.5	14