Jeremy M Silverman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11953399/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 2013, 45, 1150-1159.	9.4	1,395
2	Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nature Genetics, 2007, 39, 319-328.	9.4	1,272
3	Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 2009, 459, 569-573.	13.7	1,270
4	Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part II: Schizophrenia. American Journal of Human Genetics, 2003, 73, 34-48.	2.6	1,072
5	Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature, 2009, 460, 753-757.	13.7	1,063
6	Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 2008, 40, 1053-1055.	9.4	977
7	Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 2022, 604, 502-508.	13.7	929
8	Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 2017, 49, 27-35.	9.4	838
9	Copy Number Variants in Schizophrenia: Confirmation of Five Previous Findings and New Evidence for 3q29 Microdeletions and VIPR2 Duplications. American Journal of Psychiatry, 2011, 168, 302-316.	4.0	398
10	No Significant Association of 14 Candidate Genes With Schizophrenia in a Large European Ancestry Sample: Implications for Psychiatric Genetics. American Journal of Psychiatry, 2008, 165, 497-506.	4.0	323
11	Characterizing Affective Instability in Borderline Personality Disorder. American Journal of Psychiatry, 2002, 159, 784-788.	4.0	310
12	Analysis of 94 Candidate Genes and 12 Endophenotypes for Schizophrenia From the Consortium on the Genetics of Schizophrenia. American Journal of Psychiatry, 2011, 168, 930-946.	4.0	241
13	A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12. , 1996, 67, 40-45.		205
14	Additional support for schizophrenia linkage on chromosomes 6 and 8: A multicenter study. , 1996, 67, 580-594.		166
15	Genomewide Linkage Scan of 409 European-Ancestry and African American Families with Schizophrenia: Suggestive Evidence of Linkage at 8p23.3-p21.2 and 11p13.1-q14.1 in the Combined Sample. American Journal of Human Genetics, 2006, 78, 315-333.	2.6	141
16	Genome-Wide Linkage Analyses of 12 Endophenotypes for Schizophrenia From the Consortium on the Genetics of Schizophrenia. American Journal of Psychiatry, 2013, 170, 521-532.	4.0	114
17	Genome-Wide Association Study of Clinical Dimensions of Schizophrenia: Polygenic Effect on Disorganized Symptoms. American Journal of Psychiatry, 2012, 169, 1309-1317.	4.0	112
18	Symptom domains in autism and related conditions: Evidence for familiality. American Journal of Medical Genetics Part A, 2002, 114, 64-73.	2.4	111

#	Article	IF	CITATIONS
19	Polymorphisms in the Trace Amine Receptor 4 (TRAR4) Gene on Chromosome 6q23.2 Are Associated with Susceptibility to Schizophrenia. American Journal of Human Genetics, 2004, 75, 624-638.	2.6	101
20	Follow-up study on a susceptibility locus for schizophrenia on chromosome 6q. , 1999, 88, 337-343.		95
21	A Rare Functional Noncoding Variant at the GWAS-Implicated MIR137/MIR2682 Locus Might Confer Risk to Schizophrenia and Bipolar Disorder. American Journal of Human Genetics, 2014, 95, 744-753.	2.6	91
22	Genome-wide Association of Endophenotypes for Schizophrenia From the Consortium on the Genetics of Schizophrenia (COGS) Study. JAMA Psychiatry, 2019, 76, 1274.	6.0	78
23	Multiplex ligation-dependent probe amplification for genetic screening in autism spectrum disorders: Efficient identification of known microduplications and identification of a novel microduplication in ASMT. BMC Medical Genomics, 2008, 1, 50.	0.7	74
24	Variability of Familial Risk of Alzheimer Disease Across the Late Life Span. Archives of General Psychiatry, 2005, 62, 565.	13.8	73
25	Second stage of a genome scan of schizophrenia: Study of five positive regions in an expanded sample. American Journal of Medical Genetics Part A, 2000, 96, 864-869.	2.4	71
26	Schizophrenia susceptibility and chromosome 6p24–22. Nature Genetics, 1995, 11, 233-234.	9.4	69
27	Genetic assessment of additional endophenotypes from the Consortium on the Genetics of Schizophrenia Family Study. Schizophrenia Research, 2016, 170, 30-40.	1.1	65
28	Genome-Wide Association Study of Multiplex Schizophrenia Pedigrees. American Journal of Psychiatry, 2012, 169, 963-973.	4.0	61
29	The Association of Duration of Type 2 Diabetes with Cognitive Performance is Modulated by Long-Term Glycemic Control. American Journal of Geriatric Psychiatry, 2014, 22, 1055-1059.	0.6	54
30	New data and an old puzzle: the negative association between schizophrenia and rheumatoid arthritis. International Journal of Epidemiology, 2015, 44, 1706-1721.	0.9	53
31	Trajectories in Glycemic Control over Time Are Associated with Cognitive Performance in Elderly Subjects with Type 2 Diabetes. PLoS ONE, 2014, 9, e97384.	1.1	53
32	The Israel Diabetes and Cognitive Decline (IDCD) study: Design and baseline characteristics. Alzheimer's and Dementia, 2014, 10, 769-778.	0.4	52
33	Autismâ€related routines and rituals associated with a mitochondrial aspartate/glutamate carrier SLC25A12 polymorphism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 408-410.	1.1	51
34	Evidence of a locus for schizophrenia and related disorders on the short arm of chromosome 5 in a large pedigree. , 1996, 67, 162-171.		49
35	The Internet-Based MGS2 Control Sample: Self Report of Mental Illness. American Journal of Psychiatry, 2010, 167, 854-865.	4.0	48
36	Familial Patterns of Risk in Very Late-Onset Alzheimer Disease. Archives of General Psychiatry, 2003, 60, 190.	13.8	46

JEREMY M SILVERMAN

#	Article	IF	CITATIONS
37	Sensory gating disturbances in the spectrum: Similarities and differences in schizotypal personality disorder and schizophrenia. Schizophrenia Research, 2015, 161, 283-290.	1.1	42
38	Brief Report: Parental Age and the Sex Ratio in Autism. Journal of Autism and Developmental Disorders, 2009, 39, 1487-1492.	1.7	40
39	Comparison of the Heritability of Schizophrenia and Endophenotypes in the COGS-1 Family Study. Schizophrenia Bulletin, 2014, 40, 1404-1411.	2.3	34
40	Advancing paternal age and simplex autism. Autism, 2012, 16, 367-380.	2.4	29
41	Genetic epidemiological study of maternal and paternal transmission of alzheimer's disease. , 1999, 88, 378-382.		28
42	C-reactive protein and memory function suggest antagonistic pleiotropy in very old nondemented subjects. Age and Ageing, 2008, 38, 237-241.	0.7	28
43	C-reactive protein and familial risk for dementia. Neurology, 2012, 79, 1116-1123.	1.5	27
44	Hemoglobin A1c Variability Predicts Symptoms of Depression in Elderly Individuals With Type 2 Diabetes. Diabetes Care, 2017, 40, 1187-1193.	4.3	27
45	The TOMM40 poly-T rs10524523 variant is associated with cognitive performance among non-demented elderly with type 2 diabetes. European Neuropsychopharmacology, 2014, 24, 1492-1499.	0.3	24
46	The Role of Childhood Trauma in Differences in Affective Instability in Those With Personality Disorders. CNS Spectrums, 2003, 8, 763-770.	0.7	23
47	Waist circumference is correlated with poorer cognition in elderly type 2 diabetes women. Alzheimer's and Dementia, 2016, 12, 925-929.	0.4	22
48	Mutation analysis of the NSD1 gene in patients with autism spectrum disorders and macrocephaly. BMC Medical Genetics, 2007, 8, 68.	2.1	20
49	Decreased Motor Function Is Associated with Poorer Cognitive Function in Elderly with Type 2 Diabetes. Dementia and Geriatric Cognitive Disorders Extra, 2014, 4, 103-112.	0.6	18
50	Shorter Adult Height is Associated with Poorer Cognitive Performance in Elderly Men with Type II Diabetes. Journal of Alzheimer's Disease, 2015, 44, 927-935.	1.2	16
51	Robust differences in antisaccade performance exist between COGS schizophrenia cases and controls regardless of recruitment strategies. Schizophrenia Research, 2015, 163, 47-52.	1.1	16
52	Association of Apolipoprotein E-e4 and Dementia Declines with Age. American Journal of Geriatric Psychiatry, 2014, 22, 957-960.	0.6	15
53	The ApoE4 genotype modifies the relationship of long-term glycemic control with cognitive functioning in elderly with type 2 diabetes. European Neuropsychopharmacology, 2014, 24, 1303-1308.	0.3	15
54	Glycemic control, inflammation, and cognitive function in older patients with type 2 diabetes.	1.3	15

JEREMY M SILVERMAN

#	Article	IF	CITATIONS
55	Potential contribution of the Alzheimer׳s disease risk locus BIN1 to episodic memory performance in cognitively normal Type 2 diabetes elderly. European Neuropsychopharmacology, 2016, 26, 787-795.	0.3	14
56	A phenotype for genetic studies of successful cognitive aging*. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 167-173.	1.1	12
57	The protected survivor model: Using resistant successful cognitive aging to identify protection in the very old. Medical Hypotheses, 2018, 110, 9-14.	0.8	12
58	Depressive Symptoms Are Associated with Cognitive Function in the Elderly with Type 2 Diabetes. Journal of Alzheimer's Disease, 2018, 65, 683-692.	1.2	12
59	Age Modulates the Association of Caffeine Intake With Cognition and With Gray Matter in Elderly Diabetics. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 683-688.	1.7	12
60	Distinct age-related associations for body mass index and cognition in cognitively healthy very old veterans. International Psychogeriatrics, 2019, 31, 895-899.	0.6	11
61	Has familial aggregation in Alzheimer's disease been overestimated?. International Journal of Geriatric Psychiatry, 2000, 15, 631-637.	1.3	8
62	Outcome ageâ€based prediction of successful cognitive aging by total cholesterol. Alzheimer's and Dementia, 2018, 14, 952-960.	0.4	8
63	Refining phenotype characterization in genetic linkage studies of schizophrenia. Biodemography and Social Biology, 1991, 38, 197-218.	0.4	7
64	Brief Report: Phenotypic Differences and their Relationship to Paternal Age and Gender in Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 2015, 45, 1915-1924.	1.7	7
65	No support for linkage to the bipolar regions on chromosomes 4p, 18p, or 18q in 43 schizophrenia pedigrees. , 2000, 96, 224-227.		6
66	Neuropsychological Test Performance in Cognitively Normal Spanish-speaking Nonagenarians with Little Education. Journal of Cross-Cultural Gerontology, 2016, 31, 129-141.	0.5	5
67	Ethnicity/culture modulates the relationships of the haptoglobin (Hp) 1â€1 phenotype with cognitive function in older individuals with type 2 diabetes. International Journal of Geriatric Psychiatry, 2016, 31, 494-501.	1.3	4
68	Short-term computerized cognitive training does not improve cognition compared to an active control in non-demented adults aged 80 years and above. International Psychogeriatrics, 2020, 32, 65-73.	0.6	4
69	Increased longevity in offspring of mothers with alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 754-758.	1.1	3
70	Heritability of acoustic startle magnitude and latency from the consortium on the genetics of schizophrenia. Schizophrenia Research, 2020, 224, 33-39.	1.1	3
71	Vitamin E Intake Is Associated with Lower Brain Volume in Haptoglobin 1-1 Elderly with Type 2 Diabetes. Journal of Alzheimer's Disease, 2020, 74, 649-658.	1.2	2
72	Followâ€up study on a susceptibility locus for schizophrenia on chromosome 6q. American Journal of Medical Genetics Part A, 1999, 88, 337-343.	2.4	2

#	Article	IF	CITATIONS
73	Genome-wide DNA methylation profiling in nonagenarians suggests an effect of <i>PM20D1</i> in late onset Alzheimer's disease. CNS Spectrums, 2023, 28, 174-182.	0.7	2
74	The Association of Depressive Symptoms With Brain Volume Is Stronger Among Diabetic Elderly Carriers of the Haptoglobin 1-1 Genotype Compared to Non-carriers. Frontiers in Endocrinology, 2019, 10, 68.	1.5	1
75	How predictive of dementia are inflammatory biomarkers in late midlife?. Neurology, 2014, 83, 478-479.	1.5	0
76	P1-059: MAPT haplotypes modify the association between head injury and risk of Alzheimer's disease. , 2015, 11, P361-P361.		0
77	P2â€607: DEPRESSIVE SYMPTOMS PREDICT COGNITIVE DECLINE IN OLDER ADULTS. Alzheimer's and Dementia, 2018, 14, P972.	0.4	0
78	Depression is more strongly associated with cognition in elderly women than men with type 2 diabetes. International Psychogeriatrics, 2019, 31, 591-595.	0.6	0
79	Depression and the apathy symptom are associated with poorer cognitive functioning in very old men. Alzheimer's and Dementia, 2020, 16, e047581.	0.4	0