
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1195292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chemical Society Reviews, 2015, 44, 5371-5408.	18.7	725
2	Recent Progress in Metalâ€Organic Frameworks for Applications in Electrocatalytic and Photocatalytic Water Splitting. Advanced Science, 2017, 4, 1600371.	5.6	594
3	Progress in Solid Oxide Fuel Cells with Nickel-Based Anodes Operating on Methane and Related Fuels. Chemical Reviews, 2013, 113, 8104-8151.	23.0	420
4	Self-Assembled Triple-Conducting Nanocomposite as a Superior Protonic Ceramic Fuel Cell Cathode. Joule, 2019, 3, 2842-2853.	11.7	292
5	Recent Advances in Novel Nanostructuring Methods of Perovskite Electrocatalysts for Energyâ€Related Applications. Small Methods, 2018, 2, 1800071.	4.6	285
6	Nitrogen-doped simple and complex oxides for photocatalysis: A review. Progress in Materials Science, 2018, 92, 33-63.	16.0	257
7	Perovskite Oxide Based Electrodes for Highâ€Performance Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 136-152.	7.2	253
8	Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1803017.	10.2	224
9	Highâ€Quality Ruddlesden–Popper Perovskite Film Formation for Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2021, 33, e2002582.	11.1	182
10	Simultaneous Power Conversion Efficiency and Stability Enhancement of Cs ₂ AgBiBr ₆ Leadâ€Free Inorganic Perovskite Solar Cell through Adopting a Multifunctional Dye Interlayer. Advanced Functional Materials, 2020, 30, 2001557.	7.8	169
11	Recent Advances in Cs ₂ AgBiBr ₆ -Based Halide Double Perovskites as Lead-Free and Inorganic Light Absorbers for Perovskite Solar Cells. Energy & Fuels, 2020, 34, 10513-10528.	2.5	139
12	Recent advances in anion-doped metal oxides for catalytic applications. Journal of Materials Chemistry A, 2019, 7, 7280-7300.	5.2	133
13	Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes. Advanced Energy Materials, 2015, 5, 1500188.	10.2	128
14	SrCo _{0.9} Ti _{0.1} O _{3â~ʾĨ´} As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance. ACS Applied Materials & Interfaces, 2015, 7, 17663-17670.	4.0	125
15	Recent Advances in Metalâ€Organic Framework Derivatives as Oxygen Catalysts for Zincâ€Air Batteries. Batteries and Supercaps, 2019, 2, 272-289.	2.4	121
16	A Cobaltâ€Free Multiâ€Phase Nanocomposite as Nearâ€Ideal Cathode of Intermediateâ€Temperature Solid Oxide Fuel Cells Developed by Smart Selfâ€Assembly. Advanced Materials, 2020, 32, e1906979.	11.1	113
17	Boosting the Activity of BaCo _{0.4} Fe _{0.4} Zr _{0.1} Y _{0.1} O _{3â^'} <i>_{Î'}< Perovskite for Oxygen Reduction Reactions at Lowâ€toâ€Intermediate Temperatures through Tuning Bâ€Site Cation Deficiency. Advanced Energy Materials. 2019. 9. 1902384.</i>	^{:/i>} 10.2	111
18	Highly Active and Stable Pt–Pd Alloy Catalysts Synthesized by Roomâ€Temperature Electron Reduction for Oxygen Reduction Reaction. Advanced Science, 2017, 4, 1600486.	5.6	101

#	Article	IF	CITATIONS
19	Study of Ag/La0.6Sr0.4MnO3 catalysts for complete oxidation of methanol and ethanol at low concentrations. Applied Catalysis B: Environmental, 2000, 24, 219-232.	10.8	89
20	Stable direct-methane solid oxide fuel cells with calcium-oxide-modified nickel-based anodes operating at reduced temperatures. Applied Energy, 2016, 164, 563-571.	5.1	88
21	Gas Humidification Impact on the Properties and Performance of Perovskiteâ€Type Functional Materials in Proton onducting Solid Oxide Cells. Advanced Functional Materials, 2018, 28, 1802592.	7.8	82
22	Cation-Deficient Perovskites for Clean Energy Conversion. Accounts of Materials Research, 2021, 2, 477-488.	5.9	82
23	Perovskite materials in energy storage and conversion. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 338-369.	0.8	81
24	Rational Design of a Waterâ€6torable Hierarchical Architecture Decorated with Amorphous Barium Oxide and Nickel Nanoparticles as a Solid Oxide Fuel Cell Anode with Excellent Sulfur Tolerance. Advanced Science, 2017, 4, 1700337.	5.6	74
25	Recent progress in metal–organic frameworks for lithium–sulfur batteries. Polyhedron, 2018, 155, 464-484.	1.0	74
26	Electric Power and Synthesis Gas Coâ€generation From Methane with Zero Waste Gas Emission. Angewandte Chemie - International Edition, 2011, 50, 1792-1797.	7.2	71
27	The BaCe _{0.16} Y _{0.04} Fe _{0.8} O _{3â~`<i>δ</i>} nanocomposite: a new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. Journal of Materials Chemistry A, 2022, 10, 5381-5390.	5.2	69
28	Promoting the Efficiency and Stability of CsPbIBr ₂ -Based All-Inorganic Perovskite Solar Cells through a Functional Cu ²⁺ Doping Strategy. ACS Applied Materials & Interfaces, 2020, 12, 23984-23994.	4.0	68
29	Partial oxidation and combined reforming of methane on Ce-promoted catalysts. Catalysis Today, 2004, 98, 553-563.	2.2	67
30	Recent Advances in the Development of Anode Materials for Solid Oxide Fuel Cells Utilizing Liquid Oxygenated Hydrocarbon Fuels: A Mini Review. Energy Technology, 2019, 7, 33-44.	1.8	67
31	Pt/C–LiCoO ₂ composites with ultralow Pt loadings as synergistic bifunctional electrocatalysts for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2016, 4, 4516-4524.	5.2	65
32	Single-atom catalysts for high-efficiency photocatalytic and photoelectrochemical water splitting: distinctive roles, unique fabrication methods and specific design strategies. Journal of Materials Chemistry A, 2022, 10, 6835-6871.	5.2	63
33	Tuning layer-structured La _{0.6} Sr _{1.4} MnO _{4+δ} into a promising electrode for intermediate-temperature symmetrical solid oxide fuel cells through surface modification. Journal of Materials Chemistry A, 2016, 4, 10641-10649.	5.2	62
34	Nickelâ€Based Anode with Water Storage Capability to Mitigate Carbon Deposition for Direct Ethanol Solid Oxide Fuel Cells. ChemSusChem, 2014, 7, 1719-1728.	3.6	59
35	A NiFeCu alloy anode catalyst for direct-methane solid oxide fuel cells. Journal of Power Sources, 2014, 258, 134-141.	4.0	59
36	A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer in a solid oxide fuel cell. Journal of Power Sources, 2011, 196, 3855-3862.	4.0	58

#	Article	IF	CITATIONS
37	H2S poisoning effect and ways to improve sulfur tolerance of nickel cermet anodes operating on carbonaceous fuels. Applied Energy, 2016, 179, 765-777.	5.1	57
38	Ruddlesden–Popper Perovskite Oxides for Photocatalysis-Based Water Splitting and Wastewater Treatment. Energy & Fuels, 2020, 34, 9208-9221.	2.5	53
39	Infiltrated NiCo Alloy Nanoparticle Decorated Perovskite Oxide: A Highly Active, Stable, and Antisintering Anode for Directâ€Ammonia Solid Oxide Fuel Cells. Small, 2020, 16, e2001859.	5.2	53
40	A New Pd Doped Proton Conducting Perovskite Oxide with Multiple Functionalities for Efficient and Stable Power Generation from Ammonia at Reduced Temperatures. Advanced Energy Materials, 2021, 11, 2003916.	10.2	53
41	Methane-fueled SOFC with traditional nickel-based anode by applying Ni/Al2O3 as a dual-functional layer. Electrochemistry Communications, 2009, 11, 194-197.	2.3	52
42	Lithium and lanthanum promoted Ni-Al2O3 as an active and highly coking resistant catalyst layer for solid-oxide fuel cells operating on methane. Journal of Power Sources, 2011, 196, 90-97.	4.0	50
43	Development of a Ni–Ce0.8Zr0.2O2 catalyst for solid oxide fuel cells operating on ethanol through internal reforming. Journal of Power Sources, 2011, 196, 6177-6185.	4.0	46
44	Enhanced electrochemical performance, water storage capability and coking resistance of a Ni+BaZr0.1Ce0.7Y0.1Yb0.1O3â^' anode for solid oxide fuel cells operating on ethanol. Chemical Engineering Science, 2015, 126, 22-31.	1.9	46
45	Non-metal fluorine doping in Ruddlesden–Popper perovskite oxide enables high-efficiency photocatalytic water splitting for hydrogen production. Materials Today Energy, 2022, 23, 100896.	2.5	46
46	The role of micro-nano pores in interfacial solar evaporation systems – A review. Applied Energy, 2021, 292, 116871.	5.1	44
47	A comprehensive evaluation of a Ni–Al2O3 catalyst as a functional layer of solid-oxide fuel cell anode. Journal of Power Sources, 2010, 195, 402-411.	4.0	43
48	Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel. Journal of Power Sources, 2010, 195, 1333-1343.	4.0	43
49	Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas. Journal of Power Sources, 2014, 268, 787-793.	4.0	43
50	Greatly enhanced photocatalytic activity by organic flexible piezoelectric PVDF induced spatial electric field. Catalysis Science and Technology, 2017, 7, 5594-5601.	2.1	42
51	Understanding and Engineering of Multiphase Transport Processes in Membrane Electrode Assembly of Proton-Exchange Membrane Fuel Cells with a Focus on the Cathode Catalyst Layer: A Review. Energy & Fuels, 2020, 34, 9175-9188.	2.5	42
52	Nitrogen-doped TiO ₂ microspheres with hierarchical micro/nanostructures and rich dual-phase junctions for enhanced photocatalytic activity. RSC Advances, 2016, 6, 40923-40931.	1.7	40
53	High-Performance Proton-Conducting Fuel Cell with B-Site-Deficient Perovskites for All Cell Components. Energy & Fuels, 2020, 34, 11464-11471.	2.5	40
54	Highly promoted performance of triple-conducting cathode for YSZ-based SOFC via fluorine anion doping. Ceramics International, 2020, 46, 23964-23971.	2.3	40

#	Article	IF	CITATIONS
55	SrCo0.8Ti0.1Ta0.1O3-δ perovskite: A new highly active and durable cathode material for intermediate-temperature solid oxide fuel cells. Composites Part B: Engineering, 2021, 213, 108726.	5.9	40
56	Renewable acetic acid in combination with solid oxide fuel cells for sustainable clean electric power generation. Journal of Materials Chemistry A, 2013, 1, 5620.	5.2	39
57	Two-dimensional Dion-Jacobson halide perovskites as new-generation light absorbers for perovskite solar cells. Renewable and Sustainable Energy Reviews, 2022, 166, 112614.	8.2	39
58	Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel. Journal of Power Sources, 2011, 196, 1967-1974.	4.0	38
59	Combustion-synthesized Ru–Al2O3 composites as anode catalyst layer of a solid oxide fuel cell operating on methane. International Journal of Hydrogen Energy, 2011, 36, 755-764.	3.8	38
60	Synthesis of Hierarchical TiO ₂ –C ₃ N ₄ Hybrid Microspheres with Enhanced Photocatalytic and Photovoltaic Activities by Maximizing the Synergistic Effect. ChemPhotoChem, 2017, 1, 35-45.	1.5	37
61	Advances in Ceramic Thin Films Fabricated by Pulsed Laser Deposition for Intermediate-Temperature Solid Oxide Fuel Cells. Energy & Fuels, 2020, 34, 10568-10582.	2.5	37
62	Towards highly stable and efficient planar perovskite solar cells: Materials development, defect control and interfacial engineering. Chemical Engineering Journal, 2021, 420, 127599.	6.6	37
63	Perovskite Oxides in Catalytic Combustion of Volatile Organic Compounds: Recent Advances and Future Prospects. Energy and Environmental Materials, 2022, 5, 751-776.	7.3	37
64	A new nickel–ceria composite for direct-methane solid oxide fuel cells. International Journal of Hydrogen Energy, 2013, 38, 3741-3749.	3.8	36
65	Co-generation of electricity and syngas on proton-conducting solid oxide fuel cell with a perovskite layer as a precursor of a highly efficient reforming catalyst. Journal of Power Sources, 2017, 348, 9-15.	4.0	35
66	Enhancing the triiodide reduction activity of a perovskite-based electrocatalyst for dye-sensitized solar cells through exsolved silver nanoparticles. Journal of Materials Chemistry A, 2019, 7, 17489-17497.	5.2	35
67	A bilateral cyano molecule serving as an effective additive enables high-efficiency and stable perovskite solar cells. Journal of Energy Chemistry, 2021, 62, 243-251.	7.1	35
68	Physically mixed LiLaNi–Al2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation. International Journal of Hydrogen Energy, 2011, 36, 5632-5643.	3.8	34
69	Nickelâ€Iron Alloy Nanoparticleâ€Decorated K ₂ NiF ₄ â€Type Oxide as an Efficient and Sulfurâ€Tolerant Anode for Solid Oxide Fuel Cells. ChemElectroChem, 2017, 4, 2378-2384.	1.7	34
70	First investigation of additive engineering for highly efficient Cs2AgBiBr6-based lead-free inorganic perovskite solar cells. Applied Physics Reviews, 2021, 8, .	5.5	34
71	Ceramic Lithium Ion Conductor to Solve the Anode Coking Problem of Practical Solid Oxide Fuel Cells. ChemSusChem, 2015, 8, 2978-2986.	3.6	33
72	Exsolved Alloy Nanoparticles Decorated Ruddlesden–Popper Perovskite as Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells. Energy & Fuels, 2020, 34, 11449-11457.	2.5	32

#	Article	IF	CITATIONS
73	Efficient water splitting through solid oxide electrolysis cells with a new hydrogen electrode derived from A-site cation-deficient La0.4Sr0.55Co0.2Fe0.6Nb0.2O3-δ perovskite. Materials Today Energy, 2020, 17, 100458.	2.5	32
74	Sodium fluoride sacrificing layer concept enables high-efficiency and stable methylammonium lead iodide perovskite solar cells. Journal of Materials Science and Technology, 2022, 113, 138-146.	5.6	32
75	Core–shell structured Li _{0.33} La _{0.56} TiO ₃ perovskite as a highly efficient and sulfur-tolerant anode for solid-oxide fuel cells. Journal of Materials Chemistry A, 2015, 3, 8545-8551.	5.2	31
76	Morphology- and Phase-Controlled Synthesis of Visible-Light-Activated S-doped TiO2 with Tunable S4+/S6+ Ratio. Chemical Engineering Journal, 2020, 402, 125549.	6.6	31
77	Rational Design of Metal Oxide–Based Cathodes for Efficient Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2018, 8, 1800172.	10.2	30
78	Ethylene glycol as a new sustainable fuel for solid oxide fuel cells with conventional nickel-based anodes. Applied Energy, 2015, 148, 1-9.	5.1	29
79	Enhancing the photocatalytic activity of Ruddlesden-Popper Sr2TiO4 for hydrogen evolution through synergistic silver doping and moderate reducing pretreatment. Materials Today Energy, 2022, 23, 100899.	2.5	29
80	Benefitting from Synergistic Effect of Anion and Cation in Antimony Acetate for Stable CH ₃ NH ₃ PbI ₃ â€Based Perovskite Solar Cell with Efficiency Beyond 21%. Small, 2021, 17, e2102186.	5.2	28
81	Effect of nickel content and preparation method on the performance of Ni-Al2O3 towards the applications in solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 10958-10967.	3.8	27
82	Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive. Journal of Power Sources, 2014, 265, 20-29.	4.0	27
83	Vacancy defects on optoelectronic properties of double perovskite Cs2AgBiBr6. Materials Science in Semiconductor Processing, 2021, 123, 105541.	1.9	27
84	Ni-doped CdS porous cubes prepared from prussian blue nanoarchitectonics with enhanced photocatalytic hydrogen evolution performance. International Journal of Hydrogen Energy, 2022, 47, 3752-3761.	3.8	27
85	Manipulating cation nonstoichiometry towards developing better electrolyte for self-humidified dual-ion solid oxide fuel cells. Journal of Power Sources, 2020, 460, 228105.	4.0	26
86	Rational Design of LaNiO ₃ /Carbon Composites as Outstanding Platinumâ€Free Photocathodes in Dye‣ensitized Solar Cells With Enhanced Catalysis for the Triiodide Reduction Reaction. Solar Rrl, 2017, 1, 1700074.	3.1	25
87	Scandium and phosphorus co-doped perovskite oxides as high-performance electrocatalysts for the oxygen reduction reaction in an alkaline solution. Journal of Materials Science and Technology, 2020, 39, 22-27.	5.6	25
88	Realizing Simultaneous Detrimental Reactions Suppression and Multiple Benefits Generation from Nickel Doping toward Improved Protonic Ceramic Fuel Cell Performance. Small, 2022, 18, e2200450.	5.2	25
89	Nickel zirconia cerate cermet for catalytic partial oxidation of ethanol in a solid oxide fuel cell system. International Journal of Hydrogen Energy, 2012, 37, 8603-8612.	3.8	24
90	Prussian blue-encapsulated Fe3O4 nanoparticles for reusable photothermal sterilization of water. Journal of Colloid and Interface Science, 2019, 540, 354-361.	5.0	24

#	Article	IF	CITATIONS
91	Enhanced Sulfur Tolerance of Nickel-Based Anodes for Oxygen-Ion Conducting Solid Oxide Fuel Cells by Incorporating a Secondary Water Storing Phase. Environmental Science & Technology, 2014, 48, 12427-12434.	4.6	23
92	Enhancing the oxygen reduction activity of PrBaCo2O5+l̂´ double perovskite cathode by tailoring the calcination temperatures. International Journal of Hydrogen Energy, 2020, 45, 25996-26004.	3.8	23
93	Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells. Chemical Engineering Journal, 2022, 450, 137787.	6.6	23
94	CeO2 overlapped with nitrogen-doped carbon layer anchoring Pt nanoparticles as an efficient electrocatalyst towards oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 12119-12128.	3.8	22
95	Slightly ruthenium doping enables better alloy nanoparticle exsolution of perovskite anode for high-performance direct-ammonia solid oxide fuel cells. Journal of Materials Science and Technology, 2022, 125, 51-58.	5.6	22
96	Improving Moisture/Thermal Stability and Efficiency of CH 3 NH 3 PbI 3 â€Based Perovskite Solar Cells via Gentle Butyl Acrylate Additive Strategy. Solar Rrl, 2021, 5, 2000621.	3.1	20
97	Purified highâ€sulfur coal as a fuel for direct carbon solid oxide fuel cells. International Journal of Energy Research, 2019, 43, 2501-2513.	2.2	19
98	Turning Detrimental Effect into Benefits: Enhanced Oxygen Reduction Reaction Activity of Cobalt-Free Perovskites at Intermediate Temperature <i>via</i> CO ₂ -Induced Surface Activation. ACS Applied Materials & Interfaces, 2020, 12, 16417-16425.	4.0	19
99	Promoting polysulfide redox kinetics by Co9S8 nanoparticle-embedded in N-doped carbon nanotube hollow polyhedron for lithium sulfur batteries. Journal of Alloys and Compounds, 2021, 869, 159306.	2.8	19
100	An Intrinsically Conductive Phosphorusâ€Doped Perovskite Oxide as a New Cathode for Highâ€Performance Dyeâ€Sensitized Solar Cells by Providing Internal Conducting Pathways. Solar Rrl, 2019, 3, 1900108.	3.1	18
101	ZIF-8@polyoxometalate derived Si-doped ZnWO ₄ @ZnO nanocapsules with open-shaped structures for efficient visible light photocatalysis. Chemical Communications, 2018, 54, 13786-13789.	2.2	17
102	Evaluation of the CO2 tolerant cathode for solid oxide fuel cells: Praseodymium oxysulfates/Ba0.5Sr0.5Co0.8Fe0.2O3-l´. Applied Surface Science, 2019, 472, 10-15.	3.1	17
103	Direct Operation of Solid Oxide Fuel Cells on Low-Concentration Oxygen-Bearing Coal-Bed Methane with High Stability. Energy & Fuels, 2018, 32, 4547-4558.	2.5	16
104	Rational Design of Superior, Cokingâ€Resistant, Nickelâ€Based Anodes through Tailoring Interfacial Reactions for Solid Oxide Fuel Cells Operated on Methane Fuel. ChemSusChem, 2018, 11, 3112-3119.	3.6	16
105	Chlorine-Doped Perovskite Oxide: A Platinum-Free Cathode for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 35641-35652.	4.0	15
106	Effect of fabrication method on properties and performance of bimetallic Ni0.75Fe0.25 anode catalyst for solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 9287-9297.	3.8	14
107	Iron incorporated Ni–ZrO2 catalysts for electric power generation from methane. International Journal of Hydrogen Energy, 2012, 37, 9801-9808.	3.8	14
108	Inherently Catalyzed Boudouard Reaction of Bamboo Biochar for Solid Oxide Fuel Cells with Improved Performance. Energy & Fuels, 2018, 32, 4559-4568.	2.5	14

#	Article	IF	CITATIONS
109	A solid oxide carbon fuel cell operating on pomelo peel char with high power output. International Journal of Energy Research, 2019, 43, 2514-2526.	2.2	14
110	Tuning the A-Site Cation Deficiency of La0.8Sr0.2FeO3â^î^ Perovskite Oxides for High-Efficiency Triiodide Reduction Reaction in Dye-Sensitized Solar Cells. Energy & Fuels, 2020, 34, 11322-11329.	2.5	14
111	A Direct <i>n</i> -Butane Solid Oxide Fuel Cell Using Ba(Zr _{0.1} Ce _{0.7} Y _{0.1} Yb _{0.1}) _{0.9} Ni _{0.05<!--<br-->Perovskite as the Reforming Layer. ACS Applied Materials & Interfaces, 2021, 13, 20105-20113.}	/sub> R ux sub)>0 1 245
112	Prussian blue-conjugated ZnO nanoparticles for near-infrared light-responsive photocatalysis. Materials Today Energy, 2022, 23, 100895.	2.5	14
113	Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes. Journal of Power Sources, 2013, 240, 232-240.	4.0	12
114	Mixed Fuel Strategy for Carbon Deposition Mitigation in Solid Oxide Fuel Cells at Intermediate Temperatures. Environmental Science & Technology, 2014, 48, 7122-7127.	4.6	12
115	Study on proton-conducting solid oxide fuel cells with a conventional nickel cermet anode operating on dimethyl ether. Journal of Power Sources, 2011, 196, 9246-9253.	4.0	11
116	A novel heterogeneous <scp>La_{0.8}Sr_{0.2}CoO_{3â^îî}/(La_{0.5}Sr_{0.5})<sub dualâ€phase membrane for oxygen separation. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2239.</sub </scp>	o>2Co	00 _{4+l´<}
117	Reducing the operation temperature of a solid oxide fuel cell using a conventional nickel-based cermet anode on dimethyl ether fuel through internal partial oxidation. Journal of Power Sources, 2011, 196, 7601-7608.	4.0	10
118	Single-chamber solid oxide fuel cells with nanocatalyst-modified anodes capable of in situ activation. Journal of Power Sources, 2014, 264, 220-228.	4.0	10
119	Oneâ€pot synthesis of silverâ€modified sulfurâ€ŧolerant anode for SOFCs with an expanded operation temperature window. AICHE Journal, 2017, 63, 4287-4295.	1.8	10
120	Porous MoWN/MoWC@N C Nano-octahedrons synthesized via confined carburization and vapor deposition in MOFs as efficient trifunctional electrocatalysts for oxygen reversible catalysis and hydrogen production in the same electrolyte. Journal of Colloid and Interface Science, 2021, 601, 626-639.	5.0	10
121	Porous rare earth-transition metal bimetallic oxide nanoparticles oxygen electrocatalyst for rechargeable Zinc-air battery. Journal of the Taiwan Institute of Chemical Engineers, 2022, 134, 104280.	2.7	9
122	Morphology and Catalytic Performance of Flake-Shaped NiO-Yttria-Stabilized Zirconia (YSZ) Particles with Nanocrystalline YSZ Grains. Industrial & Engineering Chemistry Research, 2012, 51, 6387-6394.	1.8	8
123	Rational Design of Perovskite-Based Anode with Decent Activity for Hydrogen Electro-Oxidation and Beneficial Effect of Sulfur for Promoting Power Generation in Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces, 2018, 10, 41257-41267.	4.0	8
124	Perowskitoxidâ€Elektroden zur leistungsstarken photoelektrochemischen Wasserspaltung. Angewandte Chemie, 2020, 132, 140-158.	1.6	8
125	Methane catalytic decomposition integrated with on-line Pd membrane hydrogen separation for fuel cell application. International Journal of Hydrogen Energy, 2010, 35, 2958-2963.	3.8	7
126	Further performance enhancement of a DME-fueled solid oxide fuel cell by applying anode functional catalyst. International Journal of Hydrogen Energy, 2012, 37, 6844-6852.	3.8	7

WEI WANG

#	Article	IF	CITATIONS
127	A steel slag–derived Boudouard reaction catalyst for improved performance of direct carbon solid oxide fuel cells. International Journal of Energy Research, 2019, 43, 6970.	2.2	7
128	Three-Dimensional Bi \$\$_{5}\$\$ 5 O \$\$_{7}\$\$ 7 I Photocatalysts for Efficient Removal of NO in Air Under Visible Light. Aerosol Science and Engineering, 2017, 1, 33-40.	1.1	6
129	Solution-processed lead-free double perovskite microplatelets with enhanced photoresponse and thermal stability. Science China Materials, 2022, 65, 1313-1319.	3.5	5
130	Electrochemical Performance of a Ni and YSZ Composite Synthesised by Ultrasonic Spray Pyrolysis as an Anode for SOFCs. Fuel Cells, 2011, 11, 654-660.	1.5	4
131	A New Sodium-ion-conducting Layered Perovskite Oxide as Highly Active and Sulfur Tolerant Electrocatalyst for Solid Oxide Fuel Cells. Energy Procedia, 2019, 158, 1660-1665.	1.8	4
132	Virtual Special Issue of Research Highlights on Sustainable Energy and Clean Fuels at State Key Laboratory of Materials-Oriented Chemical Engineering (SKL-MCE), China. Energy & Fuels, 2021, 35, 905-910.	2.5	3
133	Perovskite Materials in Photovoltaics. Materials Horizons, 2020, , 175-207.	0.3	1