Hiroshi Kawarada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1195277/publications.pdf

Version: 2024-02-01

342 papers 10,085 citations

53 h-index 83 g-index

356 all docs

 $\begin{array}{c} 356 \\ \text{docs citations} \end{array}$

356 times ranked

5319 citing authors

#	Article	IF	Citations
1	Hydrogen-terminated diamond surfaces and interfaces. Surface Science Reports, 1996, 26, 205-206.	3.8	529
2	Superconductivity in diamond thin films well above liquid helium temperature. Applied Physics Letters, 2004, 85, 2851-2853.	1.5	277
3	Origin of the metallic properties of heavily boron-doped superconducting diamond. Nature, 2005, 438, 647-650.	13.7	244
4	Enhancement mode metalâ€semiconductor field effect transistors using homoepitaxial diamonds. Applied Physics Letters, 1994, 65, 1563-1565.	1.5	166
5	Growth Kinetics of 0.5 cm Vertically Aligned Single-Walled Carbon Nanotubes. Journal of Physical Chemistry B, 2007, 111, 1907-1910.	1.2	165
6	C-H surface diamond field effect transistors for high temperature (400 °C) and high voltage (500 V) operation. Applied Physics Letters, 2014, 105, .	1.5	161
7	Normally-Off C–H Diamond MOSFETs With Partial C–O Channel Achieving 2-kV Breakdown Voltage. IEEE Electron Device Letters, 2017, 38, 363-366.	2.2	144
8	Properties of metal/diamond interfaces and effects of oxygen adsorbed onto diamond surface. Applied Physics Letters, 1991, 58, 940-941.	1.5	139
9	Scanning-tunneling-microscope observation of the homoepitaxial diamond (001) $2\tilde{A}-1$ reconstruction observed under atmospheric pressure. Physical Review B, 1995, 52, 11351-11358.	1.1	133
10	Low Temperature Synthesis of Extremely Dense and Vertically Aligned Single-Walled Carbon Nanotubes. Japanese Journal of Applied Physics, 2005, 44, 1558-1561.	0.8	130
11	Large Area Chemical Vapour Deposition of Diamond Particles and Films Using Magneto-Microwave Plasma. Japanese Journal of Applied Physics, 1987, 26, L1032-L1034.	0.8	122
12	Electrolyte-Solution-Gate FETs Using Diamond Surface for Biocompatible Ion Sensors. Physica Status Solidi A, 2001, 185, 79-83.	1.7	122
13	DNA Micropatterning on Polycrystalline Diamond via One-Step Direct Amination. Langmuir, 2006, 22, 3728-3734.	1.6	111
14	Spontaneous polarization model for surface orientation dependence of diamond hole accumulation layer and its transistor performance. Applied Physics Letters, 2008, 92, .	1.5	106
15	Smart Power Devices and ICs Using GaAs and Wide and Extreme Bandgap Semiconductors. IEEE Transactions on Electron Devices, 2017, 64, 856-873.	1.6	106
16	Excitonic recombination radiation in undoped and boron-doped chemical-vapor-deposited diamonds. Physical Review B, 1993, 47, 3633-3637.	1.1	105
17	Heteroepitaxial growth of smooth and continuous diamond thin films on silicon substrates via high quality silicon carbide buffer layers. Applied Physics Letters, 1995, 66, 583-585.	1.5	105
18	Superconducting properties of homoepitaxial CVD diamond. Diamond and Related Materials, 2007, 16, 911-914.	1.8	104

#	Article	IF	CITATIONS
19	Cathodoluminescence and electroluminescence of undoped and boronâ€doped diamond formed by plasma chemical vapor deposition. Journal of Applied Physics, 1990, 67, 983-989.	1.1	100
20	Low temperature grown carbon nanotube interconnects using inner shells by chemical mechanical polishing. Applied Physics Letters, 2007, 91, .	1.5	100
21	High-preformance diamond surface-channel field-effect transistors and their operation mechanism. Diamond and Related Materials, 1999, 8, 927-933.	1.8	96
22	Label-free DNA sensors using ultrasensitive diamond field-effect transistors in solution. Physical Review E, 2006, 74, 041919.	0.8	93
23	High-frequency performance of diamond field-effect transistor. IEEE Electron Device Letters, 2001, 22, 390-392.	2.2	91
24	Fabrication of photo-electrochemical biosensors for ultrasensitive screening of mono-bioactive molecules: the effect of geometrical structures and crystal surfaces. Journal of Materials Chemistry B, 2017, 5, 7985-7996.	2.9	88
25	Selective nucleation and growth of diamond particles by plasmaâ€assisted chemical vapor deposition. Applied Physics Letters, 1989, 55, 1071-1073.	1.5	87
26	Control wettability of the hydrogen-terminated diamond surface and the oxidized diamond surface using an atomic force microscope. Diamond and Related Materials, 2003, 12, 560-564.	1.8	85
27	Very High Yield Growth of Vertically Aligned Single-Walled Carbon Nanotubes by Point-Arc Microwave Plasma CVD. Chemical Vapor Deposition, 2005, 11, 127-130.	1.4	85
28	Durability-enhanced two-dimensional hole gas of C-H diamond surface for complementary power inverter applications. Scientific Reports, 2017, 7, 42368.	1.6	85
29	Heteroepitaxial growth of highly oriented diamond on cubic silicon carbide. Journal of Applied Physics, 1997, 81, 3490-3493.	1.1	84
30	Semi-quantitative study on the fabrication of densely packed and vertically aligned single-walled carbon nanotubes. Carbon, 2006, 44, 2009-2014.	5.4	84
31	Effects of diamond-FET-based RNA aptamer sensing for detection of real sample of HIV-1 Tat protein. Biosensors and Bioelectronics, 2013, 40, 277-282.	5.3	83
32	3.8 W/mm RF Power Density for ALD Al ₂ O ₃ -Based Two-Dimensional Hole Gas Diamond MOSFET Operating at Saturation Velocity. IEEE Electron Device Letters, 2019, 40, 279-282.	2.2	83
33	Electrical Properties of Carbon Nanotubes Grown at a Low Temperature for Use as Interconnects. Japanese Journal of Applied Physics, 2008, 47, 1985.	0.8	73
34	Characterization of hydrogen-terminated CVD diamond surfaces and their contact properties. Diamond and Related Materials, 1994, 3, 961-965.	1.8	72
35	Superconductivity in polycrystalline diamond thin films. Diamond and Related Materials, 2005, 14, 1936-1938.	1.8	72
36	High-reliability passivation of hydrogen-terminated diamond surface by atomic layer deposition of Al2O3. Journal of Applied Physics, 2014, 115, .	1.1	70

#	Article	IF	CITATIONS
37	Direct Evidence for Root Growth of Vertically Aligned Single-Walled Carbon Nanotubes by Microwave Plasma Chemical Vapor Deposition. Journal of Physical Chemistry B, 2005, 109, 19556-19559.	1.2	68
38	Blue and Green Cathodoluminescence of Synthesized Diamond Films Formed by Plasma-Assisted Chemical Vapour Deposition. Japanese Journal of Applied Physics, 1988, 27, L683-L686.	0.8	67
39	Electric Properties of Metal/Diamond Interfaces Utilizing Hydrogen-Terminated Surfaces of Homoepitaxial Diamonds. Japanese Journal of Applied Physics, 1994, 33, L708-L711.	0.8	66
40	Cathodoluminescence from highâ€pressure synthetic and chemicalâ€vaporâ€deposited diamond. Journal of Applied Physics, 1995, 77, 1729-1734.	1.1	66
41	Superconductor-to-insulator transition in boron-doped diamond films grown using chemical vapor deposition. Physical Review B, 2010, 82, .	1.1	66
42	Diamond surface conductivity: Properties, devices, and sensors. MRS Bulletin, 2014, 39, 542-548.	1.7	64
43	Enhancement/depletion MESFETs of diamond and their logic circuits. Diamond and Related Materials, 1997, 6, 339-343.	1.8	62
44	Detection of Mismatched DNA on Partially Negatively Charged Diamond Surfaces by Optical and Potentiometric Methods. Journal of the American Chemical Society, 2008, 130, 13251-13263.	6.6	62
45	High-Performance P-Channel Diamond Metal–Oxide–Semiconductor Field-Effect Transistors on H-Terminated (111) Surface. Applied Physics Express, 2010, 3, 044001.	1.1	62
46	Growth of diamond films at low pressure using magneto-microwave plasma CVD. Journal of Crystal Growth, 1990, 99, 1201-1205.	0.7	61
47	The Synthesis of Diamond Films at Lower Pressure and Lower Temperature Using Magneto-Microwave Plasma CVD. Japanese Journal of Applied Physics, 1989, 28, L281-L283.	0.8	60
48	Characterization of locally modified diamond surface using Kelvin probe force microscope. Surface Science, 2005, 581, 207-212.	0.8	58
49	Over 20-GHz Cutoff Frequency Submicrometer-Gate Diamond MISFETs. IEEE Electron Device Letters, 2004, 25, 480-482.	2.2	56
50	Ozone-treated channel diamond field-effect transistors. Diamond and Related Materials, 2003, 12, 1971-1975.	1.8	55
51	Low-Energy Electrodynamics of Superconducting Diamond. Physical Review Letters, 2006, 97, 097002.	2.9	55
52	Enhanced field emission properties of vertically aligned double-walled carbon nanotube arrays. Nanotechnology, 2008, 19, 415703.	1.3	54
53	Diamond electrolyte solution gate FETs for DNA and protein sensors using DNA/RNA aptamers. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2005-2016.	0.8	54
54	Refractory two-dimensional hole gas on hydrogenated diamond surface. Journal of Applied Physics, 2012, 112, .	1.1	54

#	Article	IF	Citations
55	Signature of high <i>T</i> c above 25 K in high quality superconducting diamond. Applied Physics Letters, 2015, 106, 052601.	1.5	54
56	High-Current Metal Oxide Semiconductor Field-Effect Transistors on H-Terminated Diamond Surfaces and Their High-Frequency Operation. Japanese Journal of Applied Physics, 2012, 51, 090111.	0.8	53
57	Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing. Nanoscale, 2012, 4, 3673.	2.8	52
58	Oneâ€Pot Fabrication of Dendritic NiO@carbon–nitrogen Dot Electrodes for Screening Blood Glucose Level in Diabetes. Advanced Healthcare Materials, 2015, 4, 2110-2119.	3.9	52
59	Initial Growth of Heteroepitaxial Diamond on Si(001) Substrates via \hat{l}^2 -SiC Buffer Layer. Japanese Journal of Applied Physics, 1995, 34, 4898-4904.	0.8	51
60	Surface-modified Diamond Field-effect Transistors for Enzyme-immobilized Biosensors. Japanese Journal of Applied Physics, 2004, 43, L814-L817.	0.8	51
61	Figure of merit of diamond power devices based on accurately estimated impact ionization processes. Journal of Applied Physics, 2013, 114, .	1.1	49
62	Mesoporous NiO nanomagnets as catalysts and separators of chemical agents. Applied Catalysis B: Environmental, 2012, 127, 1-10.	10.8	48
63	High-Performance Diamond Metal-Semiconductor Field-Effect Transistor with 1 µm Gate Length. Japanese Journal of Applied Physics, 1999, 38, L1222-L1224.	0.8	47
64	Characterization of DNA Hybridization on Partially Aminated Diamond by Aromatic Compounds. Langmuir, 2006, 22, 11245-11250.	1.6	47
65	Highly sensitive detection of platelet-derived growth factor on a functionalized diamond surface using aptamer sandwich design. Analyst, The, 2012, 137, 1692.	1.7	47
66	Charge state stabilization of shallow nitrogen vacancy centers in diamond by oxygen surface modification. Japanese Journal of Applied Physics, 2017, 56, 04CK08.	0.8	46
67	Nitrogen-Terminated Diamond Surface for Nanoscale NMR by Shallow Nitrogen-Vacancy Centers. Journal of Physical Chemistry C, 2019, 123, 3594-3604.	1.5	46
68	High-performance p-channel diamond MOSFETs with alumina gate insulator. , 2007, , .		45
69	Nanofabrication on Hydrogen-Terminated Diamond Surfaces by Atomic Force Microscope Probe-Induced Oxidation. Japanese Journal of Applied Physics, 2000, 39, 4631-4632.	0.8	44
70	Clâ^' sensitive biosensor used electrolyte-solution-gate diamond FETs. Biosensors and Bioelectronics, 2003, 19, 137-140.	5. 3	44
71	Intrinsic and extrinsic recombination radiation from undoped and boronâ€doped diamonds formed by plasma chemical vapor deposition. Applied Physics Letters, 1990, 57, 1889-1891.	1.5	43
72	Mechanism Analysis of Interrupted Growth of Single-Walled Carbon Nanotube Arrays. Nano Letters, 2008, 8, 886-890.	4. 5	43

#	Article	IF	CITATIONS
73	Higher coverage of carboxylic acid groups on oxidized single crystal diamond (001). Diamond and Related Materials, 2011, 20, 1319-1324.	1.8	43
74	Schottky barrier heights, carrier density, and negative electron affinity of hydrogen-terminated diamond. Physical Review B, 2010, 81, .	1.1	42
75	Ultrashallow TiC Source/Drain Contacts in Diamond MOSFETs Formed by Hydrogenation-Last Approach. IEEE Transactions on Electron Devices, 2010, 57, 966-972.	1.6	42
76	Dominant freeâ€exciton recombination radiation in chemical vapor deposited diamonds. Applied Physics Letters, 1994, 64, 451-453.	1.5	41
77	Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood. Biosensors and Bioelectronics, 2016, 77, 656-665.	5.3	41
78	Observation of a Superconducting Gap in Boron-Doped Diamond by Laser-Excited Photoemission Spectroscopy. Physical Review Letters, 2007, 98, 047003.	2.9	40
79	Phonon softening in superconducting diamond. Physical Review B, 2007, 75, .	1.1	40
80	Vertical-type two-dimensional hole gas diamond metal oxide semiconductor field-effect transistors. Scientific Reports, 2018, 8, 10660.	1.6	40
81	High-Current Metal Oxide Semiconductor Field-Effect Transistors on H-Terminated Diamond Surfaces and Their High-Frequency Operation. Japanese Journal of Applied Physics, 2012, 51, 090111.	0.8	40
82	pH-sensitive diamond field-effect transistors (FETs) with directly aminated channel surface. Analytica Chimica Acta, 2006, 573-574, 3-8.	2.6	39
83	Hydrogen-terminated diamond vertical-type metal oxide semiconductor field-effect transistors with a trench gate. Applied Physics Letters, 2016, 109, .	1.5	38
84	Growth and electrical characterisation of $\hat{\Gamma}$ -doped boron layers on (111) diamond surfaces. Journal of Applied Physics, 2012, 111, 033710.	1.1	37
85	Fabrication and Characterization of Metal-Semiconductor Field-Effect Transistor Utilizing Diamond Surface-Conductive Layer. Japanese Journal of Applied Physics, 1995, 34, 4677-4681.	0.8	36
86	Fabrication of single-hole transistors on hydrogenated diamond surface using atomic force microscope. Applied Physics Letters, 2002, 81, 2854-2856.	1.5	36
87	Microscopic evidence for evolution of superconductivity by effective carrier doping in boron-doped diamond:B11â^'NMRstudy. Physical Review B, 2007, 75, .	1.1	36
88	Effect of iodide ions on the hydrogen-terminated and partially oxygen-terminated diamond surface. Diamond and Related Materials, 2003, 12, 618-622.	1.8	35
89	Characterization of diamond metal-insulator-semiconductor field-effect transistors with aluminum oxide gate insulator. Applied Physics Letters, 2006, 88, 112117.	1.5	35
90	Multidirectional porous NiO nanoplatelet-like mosaics as catalysts for green chemical transformations. Applied Catalysis B: Environmental, 2012, 123-124, 162-173.	10.8	35

#	Article	IF	Citations
91	Fabrication of carbon nanostructures using photo-nanoimprint lithography and pyrolysis. Journal of Micromechanics and Microengineering, 2012, 22, 045024.	1.5	34
92	Potential applications of surface channel diamond field-effect transistors. Diamond and Related Materials, 2001, 10, 1743-1748.	1.8	33
93	Triple nitrogen-vacancy centre fabrication by C5N4Hn ion implantation. Nature Communications, 2019, 10, 2664.	5.8	33
94	Oxidized Si terminated diamond and its MOSFET operation with SiO2 gate insulator. Applied Physics Letters, 2020, 116 , .	1.5	33
95	Low temperature diamond film fabrication using magneto-active plasma CVD. Diamond and Related Materials, 1992, 1, 168-174.	1.8	32
96	Plasma-Enhanced Diamond Nucleation on Si. Japanese Journal of Applied Physics, 1994, 33, L194-L196.	0.8	32
97	Control of adsorbates and conduction on CVD-grown diamond surface, using scanning probe microscope. Applied Surface Science, 2000, 159-160, 578-582.	3.1	32
98	Cu/CaF2/Diamond Metal-Insulator-Semiconductor Field-Effect Transistor Utilizing Self-Aligned Gate Fabrication Process. Japanese Journal of Applied Physics, 2000, 39, L908-L910.	0.8	32
99	Structure of Chemical Vapor Deposited Diamond (111) Surfaces by Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 1993, 32, L1771-L1774.	0.8	31
100	Effective Surface Functionalization of Nanocrystalline Diamond Films by Direct Carboxylation for PDGF Detection via Aptasensor. ACS Applied Materials & Samp; Interfaces, 2012, 4, 3526-3534.	4.0	31
101	Normally-OFF Two-Dimensional Hole Gas Diamond MOSFETs Through Nitrogen-Ion Implantation. IEEE Electron Device Letters, 2019, 40, 933-936.	2.2	31
102	Fabrication of diamond single-hole transistors using AFM anodization process. Diamond and Related Materials, 2002, 11, 387-391.	1.8	30
103	Platelet-derived growth factor oncoprotein detection using three-dimensional carbon microarrays. Biosensors and Bioelectronics, 2013, 39, 118-123.	5.3	30
104	Low-Temperature Transport Properties of Holes Introduced by Ionic Liquid Gating in Hydrogen-Terminated Diamond Surfaces. Journal of the Physical Society of Japan, 2013, 82, 074718.	0.7	30
105	High voltage breakdown (1.8 kV) of hydrogenated black diamond field effect transistor. Applied Physics Letters, 2016, 109, .	1.5	30
106	Formation of optical centers in CVD diamond by electron and neutron irradiation. Diamond and Related Materials, 1992, 1, 470-477.	1.8	29
107	High performance diamond MISFETs using CaF2 gate insulator. Diamond and Related Materials, 2003, 12, 399-402.	1.8	29
108	Aptamer-based biosensor for sensitive PDGF detection using diamond transistor. Biosensors and Bioelectronics, 2010, 26, 1599-1604.	5.3	29

#	Article	IF	CITATIONS
109	Fabrication of Metal–Oxide–Diamond Field-Effect Transistors with Submicron-Sized Gate Length on Boron-Doped (111) H-Terminated Surfaces Using Electron Beam Evaporated SiO2 and Al2O3. Journal of Electronic Materials, 2011, 40, 247-252.	1.0	29
110	Isotope analysis of diamond-surface passivation effect of high-temperature H2O-grown atomic layer deposition-Al2O3 films. Journal of Applied Physics, 2015, 117, .	1.1	29
111	Low-Temperature Synthesis of Diamond Films Using Magneto-Microwave Plasma CVD. Japanese Journal of Applied Physics, 1990, 29, L1483-L1485.	0.8	28
112	Cathodoluminescence of phosphorus doped (111) homoepitaxial diamond thin films. Diamond and Related Materials, 2001, 10, 1652-1654.	1.8	28
113	Diamond nanofabrication and characterization for biosensing application. Physica Status Solidi A, 2003, 199, 39-43.	1.7	28
114	Direct amination on 3-dimensional pyrolyzed carbon micropattern surface for DNA detection. Materials Letters, 2009, 63, 2680-2683.	1.3	28
115	Quantum oscillations of the two-dimensional hole gas at atomically flat diamond surfaces. Physical Review B, 2014, 89, .	1.1	28
116	Initial growth of heteroepitaxial diamond on Ir (001)/MgO (001) substrates using antenna-edge-type microwave plasma assisted chemical vapor deposition. Diamond and Related Materials, 2003, 12, 246-250.	1.8	27
117	Trapping mechanism on oxygen-terminated diamond surfaces. Applied Physics Letters, 2006, 89, 203503.	1.5	27
118	Preparation and characterization of wide area, high quality diamond film using magnetoactive plasma chemical vapour deposition. Surface and Coatings Technology, 1990, 43-44, 10-21.	2.2	26
119	Excitonic recombination radiation as characterization of diamonds using cathodoluminescence. Diamond and Related Materials, 1993, 2, 100-105.	1.8	26
120	Cathodoluminescence and Hall-effect measurements in sulfur-doped chemical-vapor-deposited diamond. Applied Physics Letters, 2003, 82, 2074-2076.	1.5	26
121	Drain Current Density Over 1.1 A/mm in 2D Hole Gas Diamond MOSFETs With Regrown p++-Diamond Ohmic Contacts. IEEE Electron Device Letters, 2021, 42, 204-207.	2.2	26
122	C–Si bonded two-dimensional hole gas diamond MOSFET with normally-off operation and wide temperature range stability. Carbon, 2021, 175, 525-533.	5. 4	26
123	Characterization of Diamond Particles and Films Formed by Plasma-Assisted Chemical Vapour Deposition Using High-Voltage Electron Microscopy. Japanese Journal of Applied Physics, 1987, 26, L1903-L1906.	0.8	25
124	Enhancement/Depletion Surface Channel Field Effect Transistors of Diamond and Their Logic Circuits. Japanese Journal of Applied Physics, 1997, 36, 7133-7139.	0.8	25
125	Temperature-Dependent Localized Excitations of Doped Carriers in Superconducting Diamond. Physical Review Letters, 2008, 100, 166402.	2.9	25
126	Low drift and small hysteresis characteristics of diamond electrolyte-solution-gate FET. Journal Physics D: Applied Physics, 2010, 43, 374020.	1.3	25

#	Article	IF	CITATIONS
127	Effect of atomic layer deposition temperature on current conduction in Al2O3 films formed using H2O oxidant. Journal of Applied Physics, 2016, 120, .	1.1	25
128	Carbon 1s X-ray photoelectron spectra of realistic samples of hydrogen-terminated and oxygen-terminated CVD diamond (111) and (001). Diamond and Related Materials, 2019, 93, 105-130.	1.8	25
129	Reflection electron microscope and scanning tunneling microscope observations of CVD diamond (001) surfaces. Diamond and Related Materials, 1993, 2, 1271-1276.	1.8	24
130	RF Performance of High Transconductance and High-Channel-Mobility Surface-Channel Polycrystalline Diamond Metal-Insulator-Semiconductor Field-Effect Transistors. Japanese Journal of Applied Physics, 2002, 41, 2611-2614.	0.8	24
131	DC and RF characteristics of 0.7-î¼m-gate-length diamond metal–insulator–semiconductor field effect transistor. Diamond and Related Materials, 2002, 11, 378-381.	1.8	24
132	Enhancement of field emission characteristics of tungsten emitters by single-walled carbon nanotube modification. Applied Physics Letters, 2006, 88, 033116.	1.5	24
133	Miniaturized diamond field-effect transistors for application in biosensors in electrolyte solution. Applied Physics Letters, 2007, 90, 063901.	1.5	24
134	Robustness of CNT Via Interconnect Fabricated by Low Temperature Process over a High-Density Current. , 2008, , .		24
135	Nucleation control and selective growth of diamond particles formed with plasma CVD. Journal of Crystal Growth, 1990, 99, 1206-1210.	0.7	23
136	High Voltage Stress Induced in Transparent Polycrystalline Diamond Field-Effect Transistor and Enhanced Endurance Using Thick Al ₂ O ₃ Passivation Layer. IEEE Electron Device Letters, 2017, 38, 607-610.	2.2	23
137	MOSFETs on (110) C–H Diamond: ALD Alâ,,Oâ, f/Diamond Interface Analysis and High Performance Normally-OFF Operation Realization. IEEE Transactions on Electron Devices, 2022, 69, 949-955.	1.6	23
138	Electrically Isolated Metal-Semiconductor Field Effect Transistors and Logic Circuits on Homoepitaxial Diamonds. Japanese Journal of Applied Physics, 1996, 35, L1165-L1168.	0.8	22
139	RF performance of diamond MISFETs. IEEE Electron Device Letters, 2002, 23, 121-123.	2.2	22
140	Holes in the Valence Band of Superconducting Boron-Doped Diamond Film Studied by Soft X-ray Absorption and Emission Spectroscopy. Journal of the Physical Society of Japan, 2008, 77, 054711.	0.7	22
141	Excitonic recombination radiation in phosphorus-doped CVD diamonds. Physical Review B, 2001, 64, .	1.1	21
142	Large-Area Synthesis of Carbon Nanofibers by Low-Power Microwave Plasma-Assisted CVD. Chemical Vapor Deposition, 2004, 10, 125-128.	1.4	21
143	RF Diamond Transistors: Current Status and Future Prospects. Japanese Journal of Applied Physics, 2005, 44, 7789-7794.	0.8	21
144	Over 12000 A/cm ² and 3.2 m\$Omega\$ cm ² Miniaturized Vertical-Type Two-Dimensional Hole Gas Diamond MOSFET. IEEE Electron Device Letters, 2020, 41, 111-114.	2.2	21

#	Article	IF	Citations
145	Ten Years Progress of Electrical Detection of Heavy Metal Ions (HMIs) Using Various Field-Effect Transistor (FET) Nanosensors: A Review. Biosensors, 2021, 11, 478.	2.3	21
146	Surface p-channel metal-oxide-semiconductor field effect transistors fabricated on hydrogen terminated (001) surfaces of diamond. Solid-State Electronics, 1999, 43, 1465-1471.	0.8	20
147	Effect of Cl-lonic Solutions on Electrolyte-Solution-Gate Diamond Field-Effect Transistors. Japanese Journal of Applied Physics, 2002, 41, 2595-2597.	0.8	20
148	Core-level electronic structure evolution of heavily boron-doped superconducting diamond studied with hard x-ray photoemission spectroscopy. Physical Review B, 2007, 75, .	1.1	20
149	Functionalization of ultradispersed diamond for DNA detection. Journal of Nanoparticle Research, 2008, 10, 69-75.	0.8	19
150	Space-charge-controlled field emission model of current conduction through Al2O3 films. Journal of Applied Physics, 2016, 119, .	1.1	19
151	Effect of a radical exposure nitridation surface on the charge stability of shallow nitrogen-vacancy centers in diamond. Applied Physics Express, 2017, 10, 055503.	1.1	19
152	Time-dependent dielectric breakdown of atomic-layer-deposited Al2O3 films on GaN. Journal of Applied Physics, 2018, 123, .	1.1	19
153	Surface morphology and surface p-channel field effect transistor on the heteroepitaxial diamond deposited on inclined β-SiC(001) surfaces. Applied Physics Letters, 1998, 72, 1878-1880.	1.5	18
154	Characterization of Direct Immobilized Probe DNA on Partially Functionalized Diamond Solution-Gate Field-Effect Transistors. Japanese Journal of Applied Physics, 2006, 45, L1114-L1117.	0.8	18
155	High quality single-walled carbon nanotube synthesis using remote plasma CVD. Diamond and Related Materials, 2012, 24, 184-187.	1.8	18
156	Blocking characteristics of diamond junctions with a punch-through design. Journal of Applied Physics, 2015, 117, 124503.	1.1	18
157	Lithographically engineered shallow nitrogen-vacancy centers in diamond for external nuclear spin sensing. New Journal of Physics, 2018, 20, 083029.	1.2	18
158	High Output Power Density of 2DHG Diamond MOSFETs With Thick ALD-Al ₂ O ₃ . IEEE Transactions on Electron Devices, 2021, 68, 3942-3949.	1.6	18
159	Heteroepitaxial Diamond Field-Effect Transistor for High Voltage Applications. IEEE Electron Device Letters, 2018, 39, 51-54.	2.2	17
160	Diamond Deposition on a Large-Area Substrate by Plasma-Assisted Chemical Vapor Deposition Using an Antenna-Type Coaxial Microwave Plasma Generator. Japanese Journal of Applied Physics, 2001, 40, L698-L700.	0.8	16
161	Characterization of Diamond Surface-Channel Metal-Semiconductor Field-Effect Transistor with Device Simulation. Japanese Journal of Applied Physics, 2001, 40, 3101-3107.	0.8	16
162	Cross-sectional TEM study and film thickness dependence of Tc in heavily boron-doped superconducting diamond. Physica C: Superconductivity and Its Applications, 2010, 470, S610-S612.	0.6	16

#	Article	IF	Citations
163	Post-deposition-annealing effect on current conduction in Al2O3 films formed by atomic layer deposition with H2O oxidant. Journal of Applied Physics, 2017, 121, .	1.1	16
164	Reduction of contact resistivity by As redistribution during Pd2Si formation. Journal of Applied Physics, 1983, 54, 4679-4682.	1.1	15
165	Device modeling of high performance diamond MESFETs using p-type surface semiconductive layers. Diamond and Related Materials, 1997, 6, 865-868.	1.8	15
166	MOSFETs on polished surfaces of polycrystalline diamond. Diamond and Related Materials, 1999, 8, 1831-1833.	1.8	15
167	Scanning tunneling microscopy and spectroscopy studies of superconducting boron-doped diamond films. Science and Technology of Advanced Materials, 2006, 7, S22-S26.	2.8	15
168	Growth of dense single-walled carbon nanotubes in nano-sized silicon dioxide holes for future microelectronics. Carbon, 2007, 45, 2351-2355.	5.4	15
169	Polycrystalline boron-doped diamond with an oxygen-terminated surface channel as an electrolyte-solution-gate field-effect transistor for pH sensing. Electrochimica Acta, 2016, 212, 10-15.	2.6	15
170	Low-Pressure Diamond Nucleation and Growth on Cu Substrate. Japanese Journal of Applied Physics, 1993, 32, L200-L203.	0.8	14
171	Laser-excited photoemission spectroscopy study of superconducting boron-doped diamond. Science and Technology of Advanced Materials, 2006, 7, S17-S21.	2.8	14
172	Superconductivity and low temperature electrical transport in B-doped CVD nanocrystalline diamond. Science and Technology of Advanced Materials, 2006, 7, S41-S44.	2.8	14
173	Controllable oxidization of boron doped nanodiamond covered with different solution via UV/ozone treatment. Diamond and Related Materials, 2012, 24, 146-152.	1.8	14
174	Vertical SNS weak-link Josephson junction fabricated from only boron-doped diamond. Physical Review B, 2012, 85, .	1.1	14
175	Boron Î-doped (111) diamond solution gate field effect transistors. Biosensors and Bioelectronics, 2012, 33, 152-157.	5.3	14
176	Increasing the length of a single-wall carbon nanotube forest by adding titanium to a catalytic substrate. Carbon, 2013, 57, 79-87.	5.4	14
177	An application of the integrated penalty method to free boundary problems of laplace equation. Numerical Functional Analysis and Optimization, 1981, 3, 1-17.	0.6	13
178	Deposition of wide-area diamond films in magneto-microwave plasma. Nuclear Instruments & Methods in Physics Research B, 1989, 37-38, 799-806.	0.6	13
179	Highly selective growth of vertically aligned doubleâ€walled carbon nanotubes by a controlled heating method and their electric doubleâ€layer capacitor properties. Physica Status Solidi - Rapid Research Letters, 2008, 2, 53-55.	1.2	13
180	Low-temperature synthesis of multiwalled carbon nanotubes by graphite antenna CVD in a hydrogen-free atmosphere. Carbon, 2010, 48, 825-831.	5.4	13

#	Article	IF	CITATIONS
181	Understanding the stability of a sputtered Al buffer layer for single-walled carbon nanotube forest synthesis. Carbon, 2013, 57, 401-409.	5.4	13
182	Substitution Effects of Cr or Fe on the Curie Temperature for Mn-Based Layered Compounds MnAlGe and MnGaGe With Cu ₂ Sb-Type Structure. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1,2	13
183	Very low Schottky barrier height at carbon nanotube and silicon carbide interface. Applied Physics Letters, 2015, 106, .	1.5	13
184	Role of Carboxyl and Amine Termination on a Boron-Doped Diamond Solution Gate Field Effect Transistor (SGFET) for pH Sensing. Sensors, 2018, 18, 2178.	2.1	13
185	Epitaxial Combination of Two-Dimensional Hexagonal Boron Nitride with Single-Crystalline Diamond Substrate. ACS Applied Materials & Substrate. ACS	4.0	13
186	Synthesis of highly oriented and dense conical carbon nanofibers by a DC bias-enhanced microwave plasma CVD method. Thin Solid Films, 2004, 464-465, 315-318.	0.8	12
187	An electron-spectroscopic view of CVD diamond surface conductivity. Diamond and Related Materials, 2005, 14, 459-465.	1.8	12
188	Stereophotographs of diamond and graphite. Science and Technology of Advanced Materials, 2006, 7, 45-48.	2.8	12
189	Spin-induced anomalous magnetoresistance at the (100) surface of hydrogen-terminated diamond. Physical Review B, 2016, 94, .	1.1	12
190	Properties of CVD Diamond/Metal Interface. Materials Research Society Symposia Proceedings, 1989, 162, 353.	0.1	11
191	Heteroepitaxial Growth of Tungsten Carbide Films on W(110) by Plasma-Enhanced Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1995, 34, 3628-3630.	0.8	11
192	Deep sub-micron gate diamond MISFETs. Diamond and Related Materials, 2003, 12, 1814-1818.	1.8	11
193	Fabrication of diamond MISFET with micron-sized gate length on boron-doped (111) surface. Diamond and Related Materials, 2005, 14, 2043-2046.	1.8	11
194	Acoustic and optical phonons in metallic diamond. Science and Technology of Advanced Materials, 2006, 7, S31-S36.	2.8	11
195	Stacked SNS Josephson junction of all boron doped diamond. Physica C: Superconductivity and Its Applications, 2010, 470, S613-S615.	0.6	11
196	Fluorescence-Signaling Aptasensor for ATP and PDGF Detection on Functionalized Diamond Surface. Journal of the Electrochemical Society, 2012, 159, J182-J187.	1.3	11
197	â~'10 V Threshold Voltage High-Performance Normally-OFF C–Si Diamond MOSFET Formed by p ⁺ -Diamond-First and Silicon Molecular Beam Deposition Approaches. IEEE Transactions on Electron Devices, 2022, 69, 2236-2242.	1.6	11
198	C-Si interface on SiO2/(1 1 1) diamond p-MOSFETs with high mobility and excellent normally-off operation. Applied Surface Science, 2022, 593, 153368.	3.1	11

#	Article	IF	CITATIONS
199	Structural Study of PtSi/(111)Si Interface with High-Resolution Electron Microscopy. Japanese Journal of Applied Physics, 1984, 23, L799-L802.	0.8	10
200	Interfacial structures and selective growth of diamond particles formed by plasma-assisted CVD. Applied Surface Science, 1990, 41-42, 572-579.	3.1	10
201	Effect of Electron and Neutron Irradiation on the Cathodoluminescence of Nitrogen-Doped CVD Diamond. Japanese Journal of Applied Physics, 1990, 29, L2232-L2235.	0.8	10
202	Large area diamond selective nucleation based epitaxy. Thin Solid Films, 1991, 206, 192-197.	0.8	10
203	Investigation of Current-Voltage Characteristics of Oxide Region Induced by Atomic Force Microscope on Hydrogen-Terminated Diamond Surface. Japanese Journal of Applied Physics, 2002, 41, 4980-4982.	0.8	10
204	Nanoscale Modification of the Hydrogen-Terminated Diamond Surface Using Atomic Force Microscope. Japanese Journal of Applied Physics, 2002, 41, 4983-4986.	0.8	10
205	Fabrication of heteroepitaxial diamond thin films on $Ir(001)/MgO(001)$ substrates using antenna-edge-type microwave plasma-assisted chemical vapor deposition. Diamond and Related Materials, 2002, 11, 478-481.	1.8	10
206	Memory effect of diamond in-plane-gated field-effect transistors. Applied Physics Letters, 2004, 85, 139-141.	1.5	10
207	Human immunodeficiency virus trans-activator of transcription peptide detection via ribonucleic acid aptamer on aminated diamond biosensor. Applied Physics Letters, 2011, 99, .	1.5	10
208	Aptasensor for Oncoprotein Platelet-Derived Growth Factor Detection on Functionalized Diamond Surface by Signal-Off Optical Method. Applied Physics Express, 2011, 4, 027001.	1.1	10
209	Accuracy assessment of sheet-charge approximation for Fowler-Nordheim tunneling into charged insulators. Journal of Applied Physics, 2013, 114, .	1.1	10
210	Gate/insulator-interfacial-dipole-controlled current conduction in Al2O3 metal-insulator-semiconductor capacitors. Journal of Applied Physics, 2019, 126, .	1.1	10
211	Carboxyl-functionalized graphene SGFET: pH sensing mechanism and reliability of anodization. Diamond and Related Materials, 2019, 91, 15-21.	1.8	10
212	Over 1 A/mm drain current density and 3.6ÂW/mm output power density in 2DHG diamond MOSFETs with highly doped regrown source/drain. Carbon, 2022, 188, 220-228.	5.4	10
213	Cathodoluminescence imaging of semiconducting diamond formed by plasma CVD. Journal of Crystal Growth, 1990, 103, 65-70.	0.7	9
214	Effects of Plasma Potential on Diamond Deposition at Low Pressure Using Magneto-Microwave Plasma Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1991, 30, 1279-1280.	0.8	9
215	Electron-spectroscopy and -diffraction study of the conductivity of CVD diamond ()2 \tilde{A} -1 surface. Surface Science, 2003, 529, 180-188.	0.8	9
216	Selective growth of carbon nanostructures on nickel implanted nanopyramid array. Applied Surface Science, 2004, 234, 72-77.	3.1	9

#	Article	IF	Citations
217	Fabrication of T-Shaped Gate Diamond Metal–Insulator–Semiconductor Field-Effect Transistors. Japanese Journal of Applied Physics, 2006, 45, 5681-5684.	0.8	9
218	Near EF electronic structure of heavily boron-doped superconducting diamond. Journal of Physics and Chemistry of Solids, 2008, 69, 2978-2981.	1.9	9
219	Superconductivity in nano- and micro-patterned high quality single crystalline boron-doped diamond films. Diamond and Related Materials, 2018, 90, 181-187.	1.8	9
220	Advanced photo-assisted capacitance–voltage characterization of insulator/wide-bandgap semiconductor interface using super-bandgap illumination. Journal of Applied Physics, 2019, 125, .	1,1	9
221	Microwave diamond devices technology: Fieldâ€effect transistors and modeling. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2021, 34, .	1.2	9
222	Low ON-Resistance (2.5 mî® Â·cm ²) Vertical-Type 2-D Hole Gas Diamond MOSFETs With Trench Gate Structure. IEEE Transactions on Electron Devices, 2021, 68, 3490-3496.	1.6	9
223	Persistent hole burning of the nitrogen vacancy center and the 2.16 eV center of chemicalâ€vapor deposited diamond. Applied Physics Letters, 1992, 61, 2138-2140.	1.5	8
224	Effect of Deuterium Anneal on SiO2/Si(100) Interface Traps and Electron Spin Resonance Signals of Ultrathin SiO2Films. Japanese Journal of Applied Physics, 1993, 32, L569-L571.	0.8	8
225	Temperature and Incident Beam-Current Dependence of Dominant Free-Exciton Recombination Radiation from High-Purity Chemical Vapor Deposition (CVD) Diamonds. Japanese Journal of Applied Physics, 1994, 33, L1063-L1065.	0.8	8
226	Surface characterization of smooth heteroepitaxial diamond layers on \hat{l}^2 -SiC (001). Diamond and Related Materials, 1997, 6, 277-281.	1.8	8
227	Cryogenic operation of surface-channel diamond field-effect transistors. Diamond and Related Materials, 2003, 12, 1800-1803.	1.8	8
228	Micropatterning Oligonucleotides on Single-Crystal Diamond Surface by Photolithography. Japanese Journal of Applied Physics, 2005, 44, L295-L298.	0.8	8
229	(111) vertical-type two-dimensional hole gas diamond MOSFETs with hexagonal trench structures. Carbon, 2021, 176, 349-357.	5.4	8
230	Comparison of Different Oxidation Techniques for Biofunctionalization of Pyrolyzed Carbon. Material Science Research India, 2014, 11, 01-08.	0.9	8
231	High-Resolution Electron Microscope Study of Silicon on Insulator Structure Grown by Lateral Solid Phase Epitaxy. Japanese Journal of Applied Physics, 1986, 25, L814-L817.	0.8	7
232	Fabrication of diamond films under high density helium plasma formed by electron cyclotron resonance. Surface and Coatings Technology, 1991, 49, 374-380.	2.2	7
233	11B Nuclear Magnetic Resonance Study on Existence of Boron–Hydrogen Complex in Boron-Doped Diamond. Japanese Journal of Applied Physics, 2007, 46, L1138-L1140.	0.8	7
234	Low-temperature STM/STS studies on boron-doped (111) diamond films. Journal of Physics and Chemistry of Solids, 2008, 69, 3027-3030.	1.9	7

#	Article	lF	Citations
235	Channel mobility evaluation for diamond MOSFETs using gate-to-channel capacitance measurement. Diamond and Related Materials, 2008, 17, 1256-1258.	1.8	7
236	Photoemission study of electronic structure evolution across the metal–insulator transition of heavily B-doped diamond. Journal of Physics and Chemistry of Solids, 2011, 72, 582-584.	1.9	7
237	Sheet resistance underneath the Au ohmic-electrode on hydrogen-terminated surface-conductive diamond (001). Diamond and Related Materials, 2017, 80, 93-98.	1.8	7
238	Threshold voltage control of electrolyte solution gate field-effect transistor by electrochemical oxidation. Applied Physics Letters, 2017, 111, .	1.5	7
239	An All-Solid-State pH Sensor Employing Fluorine-Terminated Polycrystalline Boron-Doped Diamond as a pH-Insensitive Solution-Gate Field-Effect Transistor. Sensors, 2017, 17, 1040.	2.1	7
240	Irradiation-Induced Modification of the Superconducting Properties of Heavily-Boron-Doped Diamond. Physical Review Applied, 2018, 10, .	1.5	7
241	Single-crystalline boron-doped diamond superconducting quantum interference devices with regrowth-induced step edge structure. Scientific Reports, 2019, 9, 15214.	1.6	7
242	Local initial heteroepitaxial growth of diamond (111) on Ru (0001)/c-sapphire by antenna-edge-type microwave plasma chemical vapor deposition. Applied Physics Letters, 2020, 117 , .	1.5	7
243	An enhanced two-dimensional hole gas (2DHG) C–H diamond with positive surface charge model for advanced normally-off MOSFET devices. Scientific Reports, 2022, 12, 4203.	1.6	7
244	Numerical Solution of the Free Surface Drainage Problem of Two Immiscible Fluids by the Boundary-Element Method. Japanese Journal of Applied Physics, 1985, 24, 1359-1362.	0.8	6
245	Fabrication of diamond in-plane-gated field effect transistors using oxygen plasma etching. Diamond and Related Materials, 2003, 12, 408-412.	1.8	6
246	Characterization of boron-doped diamonds using 11B high-resolution NMR at high magnetic fields. Diamond and Related Materials, 2008, 17, 1835-1839.	1.8	6
247	Repulsive effects of hydrophobic diamond thin films on biomolecule detection. Applied Surface Science, 2015, 328, 314-318.	3.1	6
248	Aptamer strategy for ATP detection on nanocrystalline diamond functionalized by a nitrogen and hydrogen radical beam system. Journal of Applied Physics, 2017, 121, .	1.1	6
249	Electrical property measurement of two-dimensional hole-gas layer on hydrogen-terminated diamond surface in vacuum-gap-gate structure. Applied Physics Letters, 2019, 114, .	1.5	6
250	Postdeposition annealing effect on the reliability of atomic-layer-deposited Al2O3 films on GaN. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	0.6	6
251	Space-charge-controlled field emission analysis of current conduction in amorphous and crystallized atomic-layer-deposited Al2O3 on GaN. Journal of Applied Physics, 2021, 129, .	1.1	6
252	Annealing behavior of spin density in UHV evaporated amorphous silicon. Physics Letters, Section A: General, Atomic and Solid State Physics, 1980, 78, 192-194.	0.9	5

#	Article	IF	Citations
253	Crystallinity and strength of diamond bombarded with low energy ion beams. Nuclear Instruments & Methods in Physics Research B, 1989, 39, 689-691.	0.6	5
254	Luminescence and semiconducting properties of plasma CVD diamond. Vacuum, 1990, 41, 885-888.	1.6	5
255	Electron Affinity and Surface Re-ordering of Homoepitaxial Diamond (100). Japanese Journal of Applied Physics, 1996, 35, 5444-5447.	0.8	5
256	Surface Order Evaluation of the Heteroepitaxial Diamond Film Grown on an Inclined \hat{l}^2 -SiC(001). Japanese Journal of Applied Physics, 2000, 39, 4372-4373.	0.8	5
257	Heteroepitaxial diamond thin film growth on Ir(001)/MgO(001) substrate by antenna-edge plasma assisted chemical vapor deposition. Journal of Crystal Growth, 2002, 237-239, 1277-1280.	0.7	5
258	Non-linear increases in excitonic emission in synthetic type-IIa diamond. Diamond and Related Materials, 2003, 12, 1995-1998.	1.8	5
259	Pressure effect of superconducting transition temperature for boron-doped diamond films. Physica C: Superconductivity and Its Applications, 2008, 468, 1228-1230.	0.6	5
260	Characterization of Hybridization on Diamond Solution-Gate Field-Effect Transistors for Detecting Single Mismatched Oligonucleotides. Applied Physics Express, 0, 1, 118001.	1.1	5
261	Capacitance Distribution of Ni-Nb-Zr-H Glassy Alloys. Journal of Nanoscience and Nanotechnology, 2012, 12, 3848-3852.	0.9	5
262	Functionalized carbon microarrays platform for high sensitive detection of HIV-Tat peptide. RSC Advances, 2015, 5, 65042-65047.	1.7	5
263	Electron transport dependence of nanoscale hemeprotein molecular structures for engineering electrochemical nanosensor. Nano Structures Nano Objects, 2015, 2, 35-44.	1.9	5
264	Application of 2DHG Diamond p-FET in Cascode With Normally-OFF Operation and a Breakdown Voltage of Over 1.7 kV. IEEE Transactions on Electron Devices, 2020, 67, 4006-4009.	1.6	5
265	Dynamic space-charge-controlled field emission model of current conduction in metal–insulator–semiconductor capacitors. Journal of Applied Physics, 2020, 127, .	1.1	5
266	580 V Breakdown Voltage in Vertical Diamond Trench MOSFETs With a P ^{\hat{a}'} -Drift Layer. IEEE Electron Device Letters, 2022, 43, 88-91.	2.2	5
267	Electrical Characterization of Metal/Alâ,,Oâ,ƒ/SiOâ,,/Oxidized-Si-Terminated (C–Si–O) Diamond Capacitors. IEEE Transactions on Electron Devices, 2022, 69, 3604-3610.	1.6	5
268	Normally-Off Oxidized Si-Terminated (111) Diamond MOSFETs via ALD-Al ₂ O ₃ Gate Insulator With Drain Current Density Over 300 mA/mm. IEEE Transactions on Electron Devices, 2022, 69, 4144-4152.	1.6	5
269	Influence of Pt atoms on the low temperature formation of epitaxial Pd monosilicide. Journal of Applied Physics, 1985, 57, 244-248.	1.1	4
270	MESFETs and MOSFETs on Hydrogen-Terminated Diamond Surfaces. Materials Science Forum, 1998, 264-268, 977-980.	0.3	4

#	Article	IF	Citations
271	Energy gap and surface structure of superconducting diamond films probed by scanning tunneling microscopy. Physica C: Superconductivity and Its Applications, 2007, 460-462, 210-211.	0.6	4
272	SPATIAL VARIATION OF TUNNELING SPECTRA IN (111)-ORIENTED FILMS OF BORON-DOPED DIAMOND PROBED BY STM/STS. International Journal of Modern Physics B, 2013, 27, 1362014.	1.0	4
273	Effect of Hydrogen Absorption on Electrical Transport Properties for Ni ₃₆ Nb ₂₄ Zr ₄₀ Amorphous Alloy Ribbons. Materials Transactions, 2013, 54, 1339-1342.	0.4	4
274	Large-current-controllable carbon nanotube field-effect transistor in electrolyte solution. Applied Physics Letters, 2015, 106, .	1.5	4
275	Contact Conductivity of Uncapped Carbon Nanotubes Formed by Silicon Carbide Decomposition. Journal of Physical Chemistry C, 2016, 120, 6232-6238.	1.5	4
276	Vertical edge graphite layer on recovered diamond (001) after highâ€dose ion implantation and highâ€temperature annealing. Physica Status Solidi (B): Basic Research, 2017, 254, 1700040.	0.7	4
277	Polycrystalline Boron-doped Diamond Electrolyte-solution-gate Field-effect Transistor Applied to the Measurement of Water Percentage in Ethanol. Analytical Sciences, 2017, 33, 1193-1196.	0.8	4
278	Aptamer-Based Carboxyl-Terminated Nanocrystalline Diamond Sensing Arrays for Adenosine Triphosphate Detection. Sensors, 2017, 17, 1686.	2.1	4
279	Electrical contact properties between carbon nanotube ends and a conductive atomic force microscope tip. Journal of Applied Physics, 2018, 123, .	1.1	4
280	Correlation between the Carbon Nanotube Growth Rate and Byproducts in Antenna†Type Remote Plasma Chemical Vapor Deposition Observed by Vacuum Ultraviolet Absorption Spectroscopy. Small, 2019, 15, e1901504.	5.2	4
281	Highly aligned 2D NV ensemble fabrication from nitrogen-terminated (111) surface. Carbon, 2021, 180, 127-134.	5.4	4
282	â^'400 mA mm ^{â^'1} Drain Current Density Normally-Off Polycrystalline Diamond MOSFETs. IEEE Electron Device Letters, 2022, 43, 789-792.	2.2	4
283	On a Prognosis of Gear Surface Failure Using Sound of Gears. Bulletin of the JSME, 1982, 25, 834-841.	0.1	3
284	Behavior of ionâ€implanted As atoms in Si during molybdenum disilicide formation. Journal of Applied Physics, 1986, 59, 3073-3076.	1.1	3
285	Characterization of roughness and defects at an Si/SiO2interface formed by lateral solid phase epitaxy using highâ€resolution electron microscopy. Journal of Applied Physics, 1988, 63, 2641-2644.	1.1	3
286	<title>Observing diamond defects with an analytical color-fluorescence electron microscope</title> ., 1990,,.		3
287	Application and device modeling of diamond FET using surface semiconductive layers. Electronics and Communications in Japan, 1998, 81, 19-27.	0.2	3
288	Nanodevice fabrication on hydrogenated diamond surface using atomic force microscope. Materials Research Society Symposia Proceedings, 2001, 675, 1.	0.1	3

#	Article	IF	Citations
289	Fabrication of 0.1 µm channel diamond Metal-Insulator-Semiconductor Field-Effect Transistor. Materials Research Society Symposia Proceedings, 2001, 680, 1.	0.1	3
290	Vertically aligned carbon nanotube growth from Ni nanoparticles prepared by ion implantation. Diamond and Related Materials, 2008, 17, 1443-1446.	1.8	3
291	Mathematical study of trade-off relations in logistics systems. Journal of Computational and Applied Mathematics, 2009, 232, 122-126.	1.1	3
292	Soft X-ray Core-Level Photoemission Study of Boron Sites in Heavily Boron-Doped Diamond Films. Journal of the Physical Society of Japan, 2009, 78, 034703.	0.7	3
293	Pressure effect of superconducting transition temperature for boron-doped (111) diamond films. Journal of Physics: Conference Series, 2010, 215, 012143.	0.3	3
294	High Priority of Nanocrystalline Diamond as a Biosensing Platform. Japanese Journal of Applied Physics, 2012, 51, 090125.	0.8	3
295	In-plane electrical conduction mechanisms of highly dense carbon nanotube forests on silicon carbide. Journal of Applied Physics, 2018, 123, 045104.	1.1	3
296	Pointâ€Arc Remote Plasma Chemical Vapor Deposition for Highâ€Quality Singleâ€Crystal Diamond Selective Growth. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900227.	0.8	3
297	Deoxyribonucleic-acid-sensitive Polycrystalline Diamond Solution-gate Field-effect Transistor with a Carboxyl-terminated Boron-doped Channel. Analytical Sciences, 2019, 35, 923-927.	0.8	3
298	Over 59 mV pH â^1 Sensitivity with Fluorocarbon Thin Film via Fluorine Termination for pH Sensing Usir Boronâ€Doped Diamond Solutionâ€Gate Fieldâ€Effect Transistors. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000278.	ng 0.8	3
299	Microstructure, Morphology and Magnetic Property of (001)-Textured MnAlGe Films on Si/SiO ₂ Substrate. Materials Transactions, 2021, 62, 680-687.	0.4	3
300	High Priority of Nanocrystalline Diamond as a Biosensing Platform. Japanese Journal of Applied Physics, 2012, 51, 090125.	0.8	3
301	High Temperature Performance of Enhanced Endurance Hydrogen Terminated Transparent Polycrystalline Diamond FET. IEEE Electron Device Letters, 2022, 43, 1101-1104.	2.2	3
302	<title>Cathodoluminescence of exciton recombinations and vibronic color centers in undoped, boron-doped, and nitrogen-doped CVD diamonds $<$ /title>. , 1990, , .		2
303	Microwave Performance of Diamond Field-Effect Transistors. Japanese Journal of Applied Physics, 2002, 41, 2591-2594.	0.8	2
304	Chapter 7 Diamond held effect transistors using h-terminated surfaces. Semiconductors and Semimetals, 2004, , 311-338.	0.4	2
305	DC and RF Performance of Diamond MISFETs with Alumina Gate Insulator. Materials Science Forum, 2008, 600-603, 1349-1351.	0.3	2
306	Critical concentrations of superconductor to insulator transition in $(1\ 1\ 1)$ and $(0\ 0\ 1)$ CVD boron-doped diamond. Physica C: Superconductivity and Its Applications, 2010, 470, S604-S607.	0.6	2

#	Article	IF	CITATIONS
307	Fabrication of calcium ion sensitive diamond field effect transistors (FETs) based on immobilized calmodulin. Materials Letters, 2010, 64, 2321-2324.	1.3	2
308	Electronic structures of B 2p levels in homo-epitaxial growth boron-doped diamond by soft X-rays absorption spectroscopy. Physica C: Superconductivity and Its Applications, 2010, 470, S671-S672.	0.6	2
309	Effect of hydrogen and cluster morphology on the electronic behavior of Ni-Nb-Zr-H glassy alloys with subnanometer-sized icosahedral Zr5Ni5Nb5 clusters. European Physical Journal D, 2013, 67, 1.	0.6	2
310	lonic-liquid-gating setup for stable measurements and reduced electronic inhomogeneity at low temperatures. Review of Scientific Instruments, 2018, 89, 103903.	0.6	2
311	Crystal analysis of grain boundaries in boron-doped diamond superconducting quantum interference devices operating above liquid helium temperature. Carbon, 2021, 181, 379-388.	5.4	2
312	Postdeposition annealing effect on atomic-layer-deposited Al2O3 gate insulator on (001) \hat{l}^2 -Ga2O3. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	0.6	2
313	p-type Surface Accumulation Layer of Hydrogen Terminated Diamond. Hyomen Kagaku, 2008, 29, 144-150.	0.0	2
314	Diamond-Like Carbon Thin Films. Tanso, 1987, 1987, 41-49.	0.1	2
315	<title>Low-pressure CVD for wide-area diamond film deposition at low temperatures</title> ., 1990,,.		1
316	Fundamental study of moving object tracking using local moments. Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English Translation of Denshi Tsushin Gakkai) Tj ETQq0 0 0 rgB	T / 0.v erloc	k 1 0 Tf 50 37
317	High frequency application of high transconductance surface-channel diamond field-effect transistors. , 0, , .		1
318	Electronic Devices. , 2007, , 231-280.		1
319	Diamond MISFETs fabricated on high quality polycrystalline CVD diamond. , 2007, , .		1
320	Precise detection of singly mismatched DNA with functionalized diamond electrolyte solution gate FET, 2008,,.		1
321	Room-temperature amorphous alloy field-effect transistor exhibiting particle and wave electronic transport. Journal of Applied Physics, 2015, 117, 084302.	1.1	1
322	PREPARATION AND CHARACTERIZATION OF WIDE AREA, HIGH QUALITY DIAMOND FILM USING MAGNETOACTIVE PLASMA CHEMICAL VAPOUR DEPOSITION. , 1990, , 10-21.		1
323	Effect of Deuterium Anneal on SiO2/Si(100) Interface Traps and MOS Tunneling Current of Ultrathin SiO2 Films. , 1994, , 211-216.		1
324	pH Measurement at Elevated Temperature with Vessel Gate and Oxygen-Terminated Diamond Solution Gate Field Effect Transistors. Sensors, 2022, 22, 1807.	2.1	1

#	Article	IF	Citations
325	Comparative study of excitonic recombination radiation from diamonds grown by CVD and HP/HT methods. Diamond and Related Materials, 1997, 6, 1668-1673.	1.8	0
326	High-Performance Surface-Channel Diamond Field-Effect Transistors. Materials Science Forum, 2001, 353-356, 815-0.	0.3	0
327	Low-temperature operation of diamond surface-channel field-effect transistors. Materials Research Society Symposia Proceedings, 2002, 719, 551.	0.1	0
328	Evaluations of Electrical Properties for ZnTe Thin Films Electrodeposited from a Citric Acid Bath with a Hall Effect Measurement. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 298-302.	0.2	0
329	Distribution Theoretic Approach to Multi-phase Flow. Mathematics in Industry, 2005, , 217-231.	0.1	0
330	Electrical Properties of Diamond MISFETs with Submicron-Sized Gate on Boron-Doped (111) Surface. Materials Research Society Symposia Proceedings, 2005, 891, 1.	0.1	0
331	Electronic Structures of Heavily Boron-doped Superconducting Diamond Films. Materials Research Society Symposia Proceedings, 2006, 956, 1.	0.1	0
332	Direct immobilization of DNA on partially functionalized diamond surface. Materials Research Society Symposia Proceedings, 2006, 950, 1.	0.1	0
333	Ishizaka <i>etÂal.</i> Reply:. Physical Review Letters, 2009, 102, .	2.9	0
334	Research Progress on Materials for MEMS and Electronics Devices of Electronics Materials Development Group. Materia Japan, 2015, 54, 232-235.	0.1	0
335	Direct partial CH3 termination into carboxyl terminated diamond surface for biosensor., 2015,,.		0
336	Vertical edge graphite layer on recovered diamond (001) after high-dose ion implantation and high-temperature annealing (Phys. Status Solidi B 9/2017). Physica Status Solidi (B): Basic Research, 2017, 254, 1770249.	0.7	0
337	Carbon Nanotube Forests on SiC: Structural and Electrical Properties. , 2019, , 605-620.		0
338	Feasibility Study of TiO _{<i>x</i>} Encapsulation of Diamond Solutionâ€Gate Fieldâ€Effect Transistor Metal Contacts for Miniature Biosensor Applications. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000634.	0.8	0
339	Fabrication of diamond films under high density helium plasma formed by electron cyclotron resonance., 1991,, 374-380.		0
340	Effect of Surface Charge Model in the Characterization of Two-dimensional Hydrogenated Nanocrystalline-diamond Metal Oxide Semiconductor Field Effect Transistor (MOSFET) with Device Simulation., 2021,,.		0
341	Fluorine-Terminated Polycrystalline Diamond Solution-Gate Field-Effect Transistor Sensor with Smaller Amount of Unexpectedly Generated Fluorocarbon Film Fabricated by Fluorine Gas Treatment. Materials, 2022, 15, 2966.	1.3	0
342	300 mA/mm Drain Current Density P-Type Enhancement-Mode Oxidized Si-terminated (111) Diamond MOSFETs with ALD Al ₂ O ₃ Gate Insulator., 2022,,.		0