List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11952586/publications.pdf Version: 2024-02-01

Ευνναρ Ο Ηλιι

#	Article	IF	CITATIONS
1	Pre-Clinical Common Data Elements for Traumatic Brain Injury Research: Progress and Use Cases. Journal of Neurotrauma, 2021, 38, 1399-1410.	1.7	22
2	Healthy dietary intake moderates the effects of age on brain iron concentration and working memory performance. Neurobiology of Aging, 2021, 106, 183-196.	1.5	12
3	Pharmacological inhibition of lipid peroxidative damage by the 21-aminosteroid U-74389G improves cortical mitochondrial function following traumatic brain injury in young adult male rats. Neuropharmacology, 2020, 170, 108023.	2.0	2
4	Protective effects of phenelzine administration on synaptic and non-synaptic cortical mitochondrial function and lipid peroxidation-mediated oxidative damage following TBI in young adult male rats. Experimental Neurology, 2020, 330, 113322.	2.0	12
5	Newer pharmacological approaches for antioxidant neuroprotection in traumatic brain injury. Neuropharmacology, 2019, 145, 247-258.	2.0	47
6	Effects of Phenelzine Administration on Mitochondrial Function, Calcium Handling, and Cytoskeletal Degradation after Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 1231-1251.	1.7	11
7	Continuous Infusion of Phenelzine, Cyclosporine A, or Their Combination: Evaluation of Mitochondrial Bioenergetics, Oxidative Damage, and Cytoskeletal Degradation following Severe Controlled Cortical Impact Traumatic Brain Injury in Rats. Journal of Neurotrauma, 2018, 35, 1280-1293.	1.7	21
8	Post-Injury Treatment with NIM811 Promotes Recovery of Function in Adult Female Rats after Spinal Cord Contusion: A Dose-Response Study. Journal of Neurotrauma, 2018, 35, 492-499.	1.7	24
9	Pre-Clinical Testing of Therapies for Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 2737-2754.	1.7	68
10	Synaptic Mitochondria are More Susceptible to Traumatic Brain Injury-induced Oxidative Damage and Respiratory Dysfunction than Non-synaptic Mitochondria. Neuroscience, 2018, 386, 265-283.	1.1	44
11	Oxidative Damage Mechanisms in Traumatic Brain Injury and Antioxidant Neuroprotective Approaches. , 2018, , 39-61.		2
12	ls it time to resurrect "lazaroidsâ€ ? . Journal of Neuroscience Research, 2017, 95, 17-20.	1.3	18
13	Time courses of post-injury mitochondrial oxidative damage and respiratory dysfunction and neuronal cytoskeletal degradation in a rat model of focal traumatic brain injury. Neurochemistry International, 2017, 111, 45-56.	1.9	63
14	Cellular and molecular mechanisms of neuroprotection and plasticity after traumatic brain injury. Neurochemistry International, 2017, 111, 1-2.	1.9	3
15	Chronic traumatic encephalopathy-integration of canonical traumatic brain injury secondary injury mechanisms with tau pathology. Progress in Neurobiology, 2017, 158, 15-44.	2.8	48
16	Phenelzine Protects Brain Mitochondrial Function <i>In Vitro</i> and <i>In Vivo</i> following Traumatic Brain Injury by Scavenging the Reactive Carbonyls 4-Hydroxynonenal and Acrolein Leading to Cortical Histological Neuroprotection. Journal of Neurotrauma, 2017, 34, 1302-1317.	1.7	36
17	Synaptic Mitochondria Sustain More Damage than Non-Synaptic Mitochondria after Traumatic Brain Injury and Are Protected by Cyclosporine A. Journal of Neurotrauma, 2017, 34, 1291-1301.	1.7	49
18	Lipid peroxidation in brain or spinal cord mitochondria after injury. Journal of Bioenergetics and Biomembranes, 2016, 48, 169-174.	1.0	94

#	Article	IF	CITATIONS
19	Methylprednisolone for the Treatment of Patients with Acute Spinal Cord Injuries: A Propensity Score-Matched Cohort Study from a Canadian Multi-Center Spinal Cord Injury Registry. Journal of Neurotrauma, 2016, 33, 972-974.	1.7	9
20	Nrf2–ARE activator carnosic acid decreases mitochondrial dysfunction, oxidative damage and neuronal cytoskeletal degradation following traumatic brain injury in mice. Experimental Neurology, 2015, 264, 103-110.	2.0	80
21	Temporal and Spatial Dynamics of Nrf2-Antioxidant Response Elements Mediated Gene Targets in Cortex and Hippocampus after Controlled Cortical Impact Traumatic Brain Injury in Mice. Journal of Neurotrauma, 2014, 31, 1194-1201.	1.7	46
22	Administration of the Nrf2–ARE activators sulforaphane and carnosic acid attenuates 4-hydroxy-2-nonenal-induced mitochondrial dysfunction ex vivo. Free Radical Biology and Medicine, 2013, 57, 1-9.	1.3	78
23	Phenelzine Mitochondrial Functional Preservation and Neuroprotection after Traumatic Brain Injury Related to Scavenging of the Lipid Peroxidation-Derived Aldehyde 4-Hydroxy-2-Nonenal. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 593-599.	2.4	69
24	Pharmacological analysis of the cortical neuronal cytoskeletal protective efficacy of the calpain inhibitor <scp>SNJ</scp> â€1945 in a mouse traumatic brain injury model. Journal of Neurochemistry, 2013, 125, 125-132.	2.1	27
25	Translational spinal cord injury research. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 109, 411-433.	1.0	37
26	Relationship of nitric oxide synthase induction to peroxynitrite-mediated oxidative damage during the first week after experimental traumatic brain injury. Experimental Neurology, 2012, 238, 176-182.	2.0	50
27	Antioxidant therapies in traumatic brain and spinal cord injury. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 675-684.	1.8	349
28	Assessments of Oxidative Damage and Lipid Peroxidation After Traumatic Brain Injury and Spinal Cord Injury. Springer Protocols, 2012, , 347-375.	0.1	0
29	Therapeutic Window Analysis of the Neuroprotective Effects of Cyclosporine A after Traumatic Brain Injury. Journal of Neurotrauma, 2011, 28, 311-318.	1.7	86
30	Pharmacological inhibition of lipid peroxidation attenuates calpain-mediated cytoskeletal degradation after traumatic brain injury. Journal of Neurochemistry, 2011, 117, 579-588.	2.1	61
31	Antioxidant Therapies for Acute Spinal Cord Injury. Neurotherapeutics, 2011, 8, 152-167.	2.1	166
32	EDITORIAL. Neurotherapeutics, 2011, 8, 149-151.	2.1	0
33	Antioxidant Therapies for Traumatic Brain Injury. Neurotherapeutics, 2010, 7, 51-61.	2.1	318
34	Mitochondrial protection after traumatic brain injury by scavenging lipid peroxyl radicals. Journal of Neurochemistry, 2010, 114, 271-280.	2.1	99
35	A Pharmacological Analysis of the Neuroprotective Efficacy of the Brain- and Cell-Permeable Calpain Inhibitor MDL-28170 in the Mouse Controlled Cortical Impact Traumatic Brain Injury Model. Journal of Neurotrauma, 2010, 27, 2233-2243.	1.7	45
36	Lipid Peroxidation-Derived Reactive Aldehydes Directly and Differentially Impair Spinal Cord and Brain Mitochondrial Function. Journal of Neurotrauma, 2010, 27, 1311-1320.	1.7	74

#	Article	IF	CITATIONS
37	Role of Animal Studies in the Design of Clinical Trials. Frontiers of Neurology and Neuroscience, 2009, 25, 10-33.	3.0	22
38	Temporal and Spatial Dynamics of Peroxynitrite-Induced Oxidative Damage after Spinal Cord Contusion Injury. Journal of Neurotrauma, 2009, 26, 1369-1378.	1.7	55
39	Comparative Neuroprotective Effects of Cyclosporin a and NIM811, a Nonimmunosuppressive Cyclosporin a Analog, following Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 87-97.	2.4	104
40	Pharmacological evidence for a role of peroxynitrite in the pathophysiology of spinal cord injury. Experimental Neurology, 2009, 216, 105-114.	2.0	63
41	Measurement of Oxygen Radicals and Lipid Peroxidation in Neural Tissues. Current Protocols in Neuroscience, 2009, 48, Unit 7.17.1-51.	2.6	17
42	Tempol protection of spinal cord mitochondria from peroxynitrite-induced oxidative damage. Free Radical Research, 2009, 43, 604-612.	1.5	49
43	Temporal and Spatial Dynamics of Peroxynitrite-Induced Oxidative Damage After Spinal Cord Contusion Injury. Journal of Neurotrauma, 2009, 26, 110306202455053.	1.7	46
44	Multifaceted roles of sphingosineâ€1â€phosphate: How does this bioactive sphingolipid fit with acute neurological injury?. Journal of Neuroscience Research, 2008, 86, 1419-1433.	1.3	31
45	Selective death of newborn neurons in hippocampal dentate gyrus following moderate experimental traumatic brain injury. Journal of Neuroscience Research, 2008, 86, 2258-2270.	1.3	113
46	Neuroprotective Effects of Tempol, a Catalytic Scavenger of Peroxynitrite-Derived Free Radicals, in a Mouse Traumatic Brain Injury Model. Journal of Cerebral Blood Flow and Metabolism, 2008, 28, 1114-1126.	2.4	125
47	Evolution of Post-Traumatic Neurodegeneration after Controlled Cortical Impact Traumatic Brain Injury in Mice and Rats as Assessed by the De Olmos Silver and Fluorojade Staining Methods. Journal of Neurotrauma, 2008, 25, 235-247.	1.7	188
48	Temporal relationship of peroxynitrite-induced oxidative damage, calpain-mediated cytoskeletal degradation and neurodegeneration after traumatic brain injury. Experimental Neurology, 2007, 205, 154-165.	2.0	127
49	Post-Injury Administration of Mitochondrial Uncouplers Increases Tissue Sparing and Improves Behavioral Outcome following Traumatic Brain Injury in Rodents. Journal of Neurotrauma, 2007, 24, 798-811.	1.7	121
50	Peroxynitrite-mediated oxidative damage to brain mitochondria: Protective effects of peroxynitrite scavengers. Journal of Neuroscience Research, 2007, 85, 2216-2223.	1.3	129
51	Role of peroxynitrite in secondary oxidative damage after spinal cord injury. Journal of Neurochemistry, 2007, 100, 639-649.	2.1	187
52	Relationship of calpain-mediated proteolysis to the expression of axonal and synaptic plasticity markers following traumatic brain injury in mice. Experimental Neurology, 2006, 201, 253-265.	2.0	74
53	Identification and characterization of PEBP as a calpain substrate. Journal of Neurochemistry, 2006, 99, 1133-1141.	2.1	26
54	Time Course of Post-Traumatic Mitochondrial Oxidative Damage and Dysfunction in a Mouse Model of Focal Traumatic Brain Injury: Implications for Neuroprotective Therapy. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 1407-1418.	2.4	306

#	Article	IF	CITATIONS
55	Preserving Function in Acute Nervous System Injury. , 2005, , 35-59.		2
56	Pathobiology of dynorphins in trauma and disease. Frontiers in Bioscience - Landmark, 2005, 10, 216.	3.0	89
57	Spatial and Temporal Characteristics of Neurodegeneration after Controlled Cortical Impact in Mice: More than a Focal Brain Injury. Journal of Neurotrauma, 2005, 22, 252-265.	1.7	282
58	Lack of a Gender Difference in Post-Traumatic Neurodegeneration in the Mouse Controlled Cortical Impact Injury Model. Journal of Neurotrauma, 2005, 22, 669-679.	1.7	80
59	Mitochondrial Uncoupling as a Therapeutic Target Following Neuronal Injury. Journal of Bioenergetics and Biomembranes, 2004, 36, 353-356.	1.0	113
60	Peroxynitrite-Mediated Protein Nitration and Lipid Peroxidation in a Mouse Model of Traumatic Brain Injury. Journal of Neurotrauma, 2004, 21, 9-20.	1.7	211
61	Neuroprotection and acute spinal cord injury: A reappraisal. NeuroRx, 2004, 1, 80-100.	6.0	344
62	Time course of production of hydroxyl free radical after subarachnoid hemorrhage in dogs. Life Sciences, 2004, 75, 979-989.	2.0	28
63	Neuroprotection and acute spinal cord injury: A reappraisal. Neurotherapeutics, 2004, 1, 80-100.	2.1	0
64	Cytoskeletal protein degradation and neurodegeneration evolves differently in males and females following experimental head injury. Experimental Neurology, 2003, 180, 55-73.	2.0	94
65	Drug development in spinal cord injury: What is the FDA looking for?. Journal of Rehabilitation Research and Development, 2003, 40, 81.	1.6	16
66	Clinical Trials in Head Injury. Journal of Neurotrauma, 2002, 19, 503-557.	1.7	868
67	Neuroimmunophilin Ligand V-10,367 is Neuroprotective after 24-Hour Delayed Administration in a Mouse Model of Diffuse Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 1212-1221.	2.4	30
68	Neuroimmunophilin Ligand V-10,367 Is Neuroprotective After 24-Hour Delayed Administration in a Mouse Model of Diffuse Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2002, , 1212-1221.	2.4	17
69	The Novel Calpain Inhibitor SJA6017 Improves Functional Outcome after Delayed Administration in a Mouse Model of Diffuse Brain Injury. Journal of Neurotrauma, 2001, 18, 1229-1240.	1.7	105
70	Special Article Pharmacological Treatment Of Acute Spinal Cord Injury: How Do We Build On Past Success?. Journal of Spinal Cord Medicine, 2001, 24, 142-146.	0.7	50
71	LC-MS/MS DETECTION OF PEROXYNITRITE-DERIVED 3-NITROTYROSINE IN RAT MICROVESSELS. , 2001, , 198-208.		0
72	Measurement of Oxygen Radicals and Lipid Peroxidation in Neural Tissues. Current Protocols in Neuroscience, 2000, 11, Unit7.17.	2.6	11

#	Article	IF	CITATIONS
73	LC-MS/MS detection of peroxynitrite-derived 3-nitrotyrosine in rat microvessels. Free Radical Biology and Medicine, 2000, 29, 1085-1095.	1.3	58
74	Estrogen-Related Gender Difference in Survival Rate and Cortical Blood Flow After Impact-Acceleration Head Injury in Rats. Journal of Neurotrauma, 2000, 17, 1155-1169.	1.7	212
75	4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol) Inhibits Peroxynitrite-Mediated Phenol Nitration. Chemical Research in Toxicology, 2000, 13, 294-300.	1.7	98
76	Gender Differences in Acute CNS Trauma and Stroke: Neuroprotective Effects of Estrogen and Progesterone. Journal of Neurotrauma, 2000, 17, 367-388.	1.7	594
77	Peroxynitrite Scavengers for the Acute Treatment of Traumatic Brain Injury. Annals of the New York Academy of Sciences, 1999, 890, 462-468.	1.8	68
78	Emerging strategies for the treatment of Alzheimer's disease at the Millennium. Expert Opinion on Emerging Drugs, 1999, 4, 35-86.	1.1	1
79	Neuroprotective Efficacy and Mechanisms of Novel Pyrrolopyrimidine Lipid Peroxidation Inhibitors in the Gerbil Forebrain Ischemia Model. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 539-547.	2.4	26
80	Attenuation of motor nerve terminal repetitive discharge by the 21-aminosteroid tirilazad: evidence of a neural calcium antagonist action. Brain Research, 1998, 779, 346-349.	1.1	1
81	Comparative neuroprotective properties of the benzodiazepine receptor full agonist diazepam and the partial agonist PNU-101017 in the gerbil forebrain ischemia model. Brain Research, 1998, 798, 325-329.	1.1	15
82	Azulenyl Nitrones: Colorimetric Detection of Oxyradical End Products and Neuroprotection in the Gerbil Transient Forebrain Ischemia/Reperfusion Model. Free Radical Biology and Medicine, 1998, 24, 738-744.	1.3	13
83	Relationship of oxygen radical-induced lipid peroxidative damage to disease onset and progression in a transgenic model of familial ALS. Journal of Neuroscience Research, 1998, 53, 66-77.	1.3	169
84	Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. , 1998, 23, 249-256.		460
85	Mutant Cu,Zn superoxide dismutase in motor neuron disease. Age, 1998, 21, 85-89.	3.0	7
86	Tirilazad Widens the Therapeutic Window for Riluzole-Induced Attenuation of Progressive Cortical Degeneration in an Infant Rat Model of the Shaken Baby Syndrome. Journal of Neurotrauma, 1998, 15, 707-719.	1.7	31
87	Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis. Neurology, 1998, 50, 62-66.	1.5	150
88	Infant Rat Model of the Shaken Baby Syndrome: Preliminary Characterization and Evidence for the Role of Free Radicals in Cortical Hemorrhaging and Progressive Neuronal Degeneration. Journal of Neurotrauma, 1998, 15, 693-705.	1.7	70
89	U74389G Prevents Vasospasm after Subarachnoid Hemorrhage in Dogs. Neurosurgery, 1998, 42, 1339-1345.	0.6	12
90	Protein Oxidative Damage in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis. Journal of Neurochemistry, 1998, 71, 2041-2048.	2.1	255

#	Article	IF	CITATIONS
91	Lazaroids: Mechanisms of Action and Implications for Disorders of the CNS. Neuroscientist, 1997, 3, 42-51.	2.6	18
92	A comparison of the effects of tirilazad on subarachnoid hemorrhage-induced blood-brain barrier permeability in male and female rats. Journal of Stroke and Cerebrovascular Diseases, 1997, 6, 389-393.	0.7	7
93	Neuroprotective effects of the GABAA receptor partial agonist U-101017 in 3-acetylpyridine-treated rats. Neuroscience Letters, 1997, 228, 45-49.	1.0	10
94	Acute Therapeutic Interventions. Neurosurgery Clinics of North America, 1997, 8, 195-206.	0.8	44
95	Neuroprotective Properties of the Benzodiazepine Receptor, Partial Agonist PNU-101017 in the Gerbil Forebrain Ischemia Model. Journal of Cerebral Blood Flow and Metabolism, 1997, 17, 875-883.	2.4	19
96	Neuroprotective effects of the dopamine agonists pramipexole and bromocriptine in 3-acetylpyridine-treated rats. Brain Research, 1997, 754, 181-186.	1.1	60
97	Immunocytochemical method for investigating in vivo neuronal oxygen radical-induced lipid peroxidation. Journal of Neuroscience Methods, 1997, 76, 115-122.	1.3	23
98	Neuroprotective effects of the novel brain-penetrating pyrrolopyrimidine antioxidants U-101033E and U-104067F against post-ischemic degeneration of nigrostriatal neurons. , 1997, 47, 650-654.		29
99	Antioxidant Therapeutic Strategies in CNS Disorders. , 1997, , 325-339.		2
100	Lipid Peroxidation. , 1997, , 200-204.		1
101	21-Aminosteroids. , 1997, , 257-261.		0
102	Induction of apolipoprotein E mRNA in the hippocampus of the gerbil after transient global ischemia. Molecular Brain Research, 1996, 38, 37-44.	2.5	33
103	Neuroprotective Effects of the Pyrrolopyrimidine U-104067F in 3-Acetylpyridine-Treated Rats. Experimental Neurology, 1996, 140, 79-83.	2.0	8
104	Two Novel Pyrrolopyrimidine Lipid Peroxidation Inhibitors U-101033E and U-104067F Protect Facial Motor Neurons Following Neonatal Axotomy. Experimental Neurology, 1996, 141, 304-309.	2.0	9
105	Cyclophosphamide Is Neuroprotective in a Gerbil Model of Transient Severe Focal Cerebral Ischemia: Correlation with Effects of Tirilazad Mesylate (U-74006F). Journal of Neurotrauma, 1996, 13, 103-113.	1.7	4
106	Tirilazad Prevention of Reperfusion Edema After Focal Ischemia in Cynomolgus Monkeys. Canadian Journal of Neurological Sciences, 1996, 23, 46-52.	0.3	13
107	Neuroprotective effects of the dopamine D 2 /D 3 agonist pramipexole against postischemic or methamphetamine-induced degeneration of nigrostriatal neurons. Brain Research, 1996, 742, 80-88.	1.1	124
108	Benefit of vitamin E, riluzole, and gababapentin in a transgenic model of familial amyotrophic lateral sclerosis. Annals of Neurology, 1996, 39, 147-157.	2.8	658

#	Article	IF	CITATIONS
109	Mild Pre- and Posttraumatic Hypothermia Attenuates Blood-Brain Barrier Damage Following Controlled Cortical Impact Injury in the Rat. Journal of Neurotrauma, 1996, 13, 1-9.	1.7	196
110	Protective effects of tirilazad mesylate and metabolite U-89678 against blood-brain barrier damage after subarachnoid hemorrhage and lipid peroxidative neuronal injury. Journal of Neurosurgery, 1996, 84, 229-233.	0.9	68
111	Direct Measurement of Lipid Hydroperoxides in Ironâ€Dependent Spinal Neuronal Injury. Journal of Neurochemistry, 1996, 66, 355-361.	2.1	25
112	Neuroprotective Efficacy of Microvascularly-Localized Versus Brain-Penetrating Antioxidants. , 1996, 66, 107-113.		42
113	Amelioration of Impaired Cerebral Metabolism After Severe Acidotic Ischemia by Tirilazad Posttreatment in Dogs. Stroke, 1996, 27, 114-121.	1.0	20
114	HPLC-chemiluminescence and thermospray LC/MS study of hydroperoxides generated from phosphatidylcholine. Free Radical Biology and Medicine, 1995, 18, 1-10.	1.3	28
115	Reply to Dr. Yamamoto. Free Radical Biology and Medicine, 1995, 19, 944.	1.3	4
116	Lack of Effect of Postinjury Treatment with Methylprednisolone or Tirilazad Mesylate on the Increase in Eicosanoid Levels in the Acutely Injured Cat Spinal Cord. Journal of Neurotrauma, 1995, 12, 245-256.	1.7	35
117	Increased Amyloid Protein Precursor and Apolipoprotein E Immunoreactivity in the Selectively Vulnerable Hippocampus Following Transient Forebrain Ischemia in Gerbils. Experimental Neurology, 1995, 135, 17-27.	2.0	102
118	Inhibition of lipid peroxidation in central nervous system trauma and ischemia. Journal of the Neurological Sciences, 1995, 134, 79-83.	0.3	112
119	Synthesis of Novel 2,4-Diaminopyrrolo[2,3-d]pyrimidines with Antioxidant, Neuroprotective, and Antiasthma Activity. Journal of Medicinal Chemistry, 1995, 38, 4161-4163.	2.9	49
120	Effects of the lipid peroxidation inhibitor tirilazed mesylate (U-74006F) on gerbil brain eicosanoid levels following ischemia and reperfusion. Brain Research, 1994, 659, 126-132.	1.1	17
121	Dose-response analysis of the effect of 21-aminosteroid tirilazad mesylate (U-74006F) upon neurological outcome and ischemic brain damage in permanent focal cerebral ischemia. Brain Research, 1994, 645, 157-163.	1.1	73
122	Age-related phospholipid hydroperoxide levels in gerbil brain measured by HPLC-chemiluminescence and their relation to hydroxyl radical stress. Brain Research, 1994, 639, 275-282.	1.1	30
123	Direct Measurement of Hydroxyl Radicals, Lipid Peroxidation, and Blood–Brain Barrier Disruption Following Unilateral Cortical Impact Head Injury in the Rat. Journal of Neurotrauma, 1994, 11, 393-404.	1.7	188
124	Therapeutic Potential of the Lazaroids (21-Aminosteroids) in Acute Central Nervous System Trauma, Ischemia and Subarachnoid Hemorrhage. Advances in Pharmacology, 1994, 28, 221-268.	1.2	194
125	[56] Antioxidant action of lazaroids. Methods in Enzymology, 1994, 234, 548-555.	0.4	20
126	Free radicals in central nervous system injury. New Comprehensive Biochemistry, 1994, , 217-238.	0.1	10

#	Article	IF	CITATIONS
127	Generation and Detection of Hydroxyl Radical Following Experimental Head Injury. Annals of the New York Academy of Sciences, 1994, 738, 15-24.	1.8	45
128	Age-Related Phospholipid Hydroperoxide Levels in Gerbil Brain Measured by HPLC-Chemiluminescence Assay and Their Relation to Hydroxyl Radical Stress — Clinical Implications. Advances in Experimental Medicine and Biology, 1994, 366, 428-429.	0.8	0
129	Hydroxyl radical production and lipid peroxidation paralles selective post-ischemic vulnerability in gerbil brain. Journal of Neuroscience Research, 1993, 34, 107-112.	1.3	131
130	Neuroprotective actions of glucocorticoid and nonglucocorticoid steroids in acute neuronal injury. Cellular and Molecular Neurobiology, 1993, 13, 415-432.	1.7	128
131	Lipid antioxidants in acute central nervous system injury. Annals of Emergency Medicine, 1993, 22, 1022-1027.	0.3	130
132	Pathophysiology of spinal cord trauma. Annals of Emergency Medicine, 1993, 22, 987-992.	0.3	237
133	Brain Hydroxyl Radical Generation in Acute Experimental Head Injury. Journal of Neurochemistry, 1993, 60, 588-594.	2.1	227
134	Age-Related Regional Changes in Hydroxyl Radical Stress and Antioxidants in Gerbil Brain. Journal of Neurochemistry, 1993, 61, 1640-1647.	2.1	90
135	The use of salicylate hydroxylation to detect hydroxyl radical generation in ischemic and traumatic brain injury. Molecular and Chemical Neuropathology, 1993, 20, 147-162.	1.0	82
136	Therapeutic value of 21-aminosteroid U74389F in acute spinal cord injury. Neurological Research, 1993, 15, 321-326.	0.6	13
137	Cerebral ischaemia, free radicals and antioxidant protection. Biochemical Society Transactions, 1993, 21, 334-339.	1.6	32
138	Role of Oxygen Radicals in Central Nervous System Trauma. , 1993, , 155-173.		6
139	The neuroprotective pharmacology of methylprednisolone. Journal of Neurosurgery, 1992, 76, 13-22.	0.9	409
140	Dextran-Coupled Deferoxamine Improves Outcome in a Murine Model of Head Injury. Journal of Neurotrauma, 1992, 9, 47-53.	1.7	171
141	Importance of Pharmacologic Considerations in the Evaluation of New Treatments for Acute Spinal Cord Injury. Journal of Neurotrauma, 1992, 9, 173-176.	1.7	251
142	Tirilazad Mesylate Protects Vitamins C and E in Brain Ischemia-Reperfusion Injury. Journal of Neurochemistry, 1992, 58, 2263-2268.	2.1	65
143	Novel inhibitors of iron-dependent lipid peroxidation for neurodegenerative disorders. Annals of Neurology, 1992, 32, S137-S142.	2.8	115

Lazaroids: Novel Cerebroprotective Antioxidants. , 1992, , 224-237.

#	Article	IF	CITATIONS
145	Effect of Delayed Administration of U74006F (Tirilazad Mesylate) on Recovery of Locomotor Function After Experimental Spinal Cord Injury. Journal of Neurotrauma, 1991, 8, 187-192.	1.7	59
146	The 21-aminosteroid antioxidant tirilazad mesylate, U-74006F, blocks cortical hypoperfusion following spreading depression. Brain Research, 1991, 553, 243-248.	1.1	18
147	Sex Differences in Postischemic Neuronal Necrosis in Gerbils. Journal of Cerebral Blood Flow and Metabolism, 1991, 11, 292-298.	2.4	240
148	Novel 21-aminosteroids that inhibit iron-dependent lipid peroxidation and protect against central nervous system trauma. Journal of Medicinal Chemistry, 1990, 33, 1145-1151.	2.9	92
149	Preservation of motor nerve function during early degeneration by the 21-aminosteroid anti-oxidant U74006F. Brain Research, 1990, 513, 244-247.	1.1	18
150	Free Radicals and CNS Injury. Critical Care Clinics, 1989, 5, 793-805.	1.0	69
151	Comparison of Two Ester Prodrugs of Methylprednisolone on Early Neurologic Recovery in a Murine Closed Head Injury Model. Journal of Neurotrauma, 1989, 6, 163-168.	1.7	6
152	Letters to the Editor. Journal of Neurotrauma, 1989, 6, 227-228.	1.7	9
153	Correlation Between Attenuation of Posttraumatic Spinal Cord Ischemia and Preservation of Tissue Vitamin E by the 21-Aminosteroid U74006F: Evidence for an <i>In Vivo</i> Antioxidant Mechanism. Journal of Neurotrauma, 1989, 6, 169-176.	1.7	127
154	Attenuation of hemorrhagic shock by the non-glucocorticoid 21-aminosteroid U74006F. European Journal of Pharmacology, 1988, 147, 299-303.	1.7	37
155	Inhibition of arachidonic acid-induced vasogenic brain edema by the non-glucocorticoid 21-aminosteroid U74006F. Brain Research, 1988, 451, 350-352.	1.1	81
156	Effects of the nonglucocorticoid 21-aminosteroid U74006F on acute cerebral hypoperfusion following experimental subarachnoid hemorrhage. Experimental Neurology, 1988, 102, 244-248.	2.0	55
157	Attenuation of progressive brain hypoperfusion following experimental subarachnoid hemorrhage by large intravenous doses of methylprednisolone. Experimental Neurology, 1988, 99, 594-606.	2.0	26
158	New Pharmacological Treatment of Acute Spinal Cord Trauma. Journal of Neurotrauma, 1988, 5, 81-89.	1.7	51
159	Effects of the 21-aminosteroid U74006F on posttraumatic spinal cord ischemia in cats. Journal of Neurosurgery, 1988, 68, 462-465.	0.9	166
160	Effects of treatment with U-74006F on neurological outcome following experimental spinal cord injury. Journal of Neurosurgery, 1988, 69, 562-567.	0.9	139
161	Effects of the 21-aminosteroid U74006F on experimental head injury in mice. Journal of Neurosurgery, 1988, 68, 456-461.	0.9	278
162	Evaluation of an intensive methylprednisolone sodium succinate dosing regimen in experimental spinal cord injury. Journal of Neurosurgery, 1987, 67, 102-105.	0.9	174

#	Article	IF	CITATIONS
163	Post-Traumatic Spinal Cord Ischemia: Relationship to Injury Severity and Physiological Parameters. Central Nervous System Trauma: Journal of the American Paralysis Association, 1987, 4, 15-25.	0.7	24
164	The effects of chronic two-fold dietary vitamin E supplementation on subarachnoid hemorrhage-induced brain hypoperfusion. Brain Research, 1987, 418, 366-370.	1.1	32
165	Intensive anti-oxidant pretreatment retards motor nerve degeneration. Brain Research, 1987, 413, 175-178.	1.1	35
166	Beneficial effects of the κ opioid receptor agonist U-50488H in experimental acute brain and spinal cord injury. Brain Research, 1987, 435, 174-180.	1.1	79
167	Role of Lipid Peroxidation in Post-Traumatic Spinal Cord Degeneration: A Review. Central Nervous System Trauma: Journal of the American Paralysis Association, 1986, 3, 281-294.	0.7	104
168	A pharmacological analysis of the pathophysiological mechanisms of posttraumatic spinal cord ischemia. Journal of Neurosurgery, 1986, 64, 951-961.	0.9	210
169	Beneficial Effects of Acute Intravenous Ibuprofen on Neurologic Recovery of Head-Injured Mice: Comparison of Cyclooxygenase Inhibition with Inhibition of Thromboxane A ₂ Synthetase or 5-Lipoxygenase. Central Nervous System Trauma: Journal of the American Paralysis Association, 1985. 2. 75-81.	0.7	23
170	High-dose glucocorticoid treatment improves neurological recovery in head-injured mice. Journal of Neurosurgery, 1985, 62, 882-887.	0.9	198
171	Characteristics of Lipid Peroxidative Conduction Block Induced by an Organic Hydroperoxide in Axons of Isolated Frog Nerve. Central Nervous System Trauma: Journal of the American Paralysis Association, 1985, 2, 161-168.	0.7	2
172	Current application of "high-dose―steroid therapy for CNS injury. Journal of Neurosurgery, 1985, 62, 806-810.	0.9	135
173	Lipid Hydrolysis and Peroxidation in Injured Spinal Cord: Partial Protection with Methylprednisolone or Vitamin E and Selenium. Central Nervous System Trauma: Journal of the American Paralysis Association, 1985, 2, 257-267.	0.7	158
174	Effects of a single large dose of methylprednisolone sodium succinate on experimental posttraumatic spinal cord ischemia. Journal of Neurosurgery, 1984, 61, 124-130.	0.9	178
175	Effects of multi-dose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilament degradation and energy metabolism. Journal of Neurosurgery, 1984, 61, 290-295.	0.9	180
176	Methylprednisolone preservation of motor nerve function during early degeneration. Experimental Neurology, 1984, 84, 715-720.	2.0	20
177	Glucocorticoid modification of spinal dopamine receptor activation by apomorphine. Brain Research, 1983, 267, 380-383.	1.1	0
178	Beneficial action of glucocorticoid treatment on neuromuscular transmission during early motor nerve degeneration. Experimental Neurology, 1983, 79, 488-496.	2.0	19
179	Uptake and elimination of methylprednisolone from contused cat spinal cord following intravenous injection of the sodium succinate ester. Journal of Neurosurgery, 1983, 58, 538-542.	0.9	50
180	Lactate and pyruvate metabolism in injured cat spinal cord before and after a single large intravenous dose of methylprednisolone. Journal of Neurosurgery, 1983, 59, 256-261.	0.9	129

#	Article	IF	CITATIONS
181	Acute Cardiovascular Response to a Single Large Intravenous Dose of Methylprednisolone and Its Effects on the Responses to Norepinephrine and Isoproterenol. Experimental Biology and Medicine, 1983, 173, 338-343.	1.1	16
182	Correlation of methylprednisolone levels in cat spinal cord with its effects on (Na+ + K+)-ATPase, lipid peroxidation, and alpha motor neuron function. Journal of Neurosurgery, 1982, 56, 838-844.	0.9	186
183	Effects of intravenous methylprednisolone on spinal cord lipid peroxidation and (Na+ + K+)-ATPase activity. Journal of Neurosurgery, 1982, 57, 247-253.	0.9	224
184	Glucocorticoid Effects on Central Nervous Excitability and Synaptic Transmission. International Review of Neurobiology, 1982, 23, 165-195.	0.9	104
185	Glucocorticoid mechanisms in acute spinal cord injury: A review and therapeutic rationale. World Neurosurgery, 1982, 18, 320-327.	1.3	236
186	Clucocorticoid effects on the electrical properties of spinal motor neurons. Brain Research, 1982, 240, 109-116.	1.1	27
187	Acute effects of intravenous glucocorticoid on cat spinal motor neuron electrical properties. Brain Research, 1982, 240, 186-190.	1.1	37
188	Effects of a Single Intravenous Glucocorticoid Dose on Biogenic Amine Levels in Cat Lumbar Spinal Cord. Journal of Neurochemistry, 1982, 38, 1787-1790.	2.1	30
189	Acute effects of intravenous glucocorticoid pretreatment on the in vitro peroxidation of cat spinal cord tissue. Experimental Neurology, 1981, 73, 321-324.	2.0	127
190	Acute enhancement of spinal cord synaptosomal (Na+ + K+)-ATPase activity in cats following intravenous methylprednisolone. Brain Research, 1981, 219, 464-469.	1.1	53
191	Glucocorticoid effects on serotonergic and noradrenergic facilitation of spinal monosynaptic transmission. Psychiatry Research, 1980, 2, 241-250.	1.7	8
192	Glucocorticoid enhancement of serotonergic facilitation of cat spinal monosynaptic motor neuron excitation. Experimental Neurology, 1980, 68, 589-594.	2.0	10
193	Acute effects of methylprednisolone sodium succinate on spinal reflexes. Experimental Neurology, 1979, 63, 476-484.	2.0	27
194	Glucocorticoid preservation of motor nerve function during early degeneration. Annals of Neurology, 1977, 1, 263-269.	2.8	35
195	Glucocorticoid effects on the edrophonium responsiveness of normal and degenerating mammalian motor nerve terminals. Annals of Neurology, 1977, 2, 404-408.	2.8	14