Temple F Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11951801/publications.pdf

Version: 2024-02-01

		76326	54911
88	9,394	40	84
papers	citations	h-index	g-index
90	90	90	9564
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evolution of genes and genomes on the Drosophila phylogeny. Nature, 2007, 450, 203-218.	27.8	1,886
2	The ancient regulatory-protein family of WD-repeat proteins. Nature, 1994, 371, 297-300.	27.8	1,409
3	The WD repeat: a common architecture for diverse functions. Trends in Biochemical Sciences, 1999, 24, 181-185.	7.5	1,101
4	Comparison of biosequences. Advances in Applied Mathematics, 1981, 2, 482-489.	0.7	681
5	G Protein Heterodimers: New Structures Propel New Questions. Cell, 1996, 84, 175-178.	28.9	201
6	The statistical distribution of nucleic acid similarities. Nucleic Acids Research, 1985, 13, 645-656.	14.5	198
7	Polytene Chromosomal Maps of 11 Drosophila Species: The Order of Genomic Scaffolds Inferred From Genetic and Physical Maps. Genetics, 2008, 179, 1601-1655.	2.9	191
8	Chromosomal Rearrangement Inferred From Comparisons of 12 Drosophila Genomes. Genetics, 2008, 179, 1657-1680.	2.9	184
9	Folding of Proteins with WD-Repeats:  Comparison of Six Members of the WD-Repeat Superfamily to the G Protein β Subunit. Biochemistry, 1996, 35, 13985-13994.	2.5	178
10	Remnants of an Ancient Metabolism without Phosphate. Cell, 2017, 168, 1126-1134.e9.	28.9	175
11	Structural analysis based on stateâ€space modeling. Protein Science, 1993, 2, 305-314.	7.6	169
12	The nature of Lactose operator constitutive mutations. Journal of Molecular Biology, 1971, 59, 273-305.	4.2	158
13	Global Optimum Protein Threading with Gapped Alignment and Empirical Pair Score Functions. Journal of Molecular Biology, 1996, 255, 641-665.	4.2	150
14	Protein classification by stochastic modeling and optimal filtering of amino-acid sequences. Mathematical Biosciences, 1994, 119, 35-75.	1.9	143
15	Diversity of WD-Repeat proteins. Sub-Cellular Biochemistry, 2008, 48, 20-30.	2.4	122
16	Genomic detection of new yeast pre-mRNA 3'-end-processing signals. Nucleic Acids Research, 1999, 27, 888-894.	14.5	118
17	Patterns of Genome Organization in Bacteria. Science, 1998, 279, 1827-1827.	12.6	105

#	Article	IF	CITATIONS
19	Probabilistic prediction of Saccharomyces cerevisiae mRNA 3'-processing sites. Nucleic Acids Research, 2002, 30, 1851-1858.	14.5	101
20	A Biologically Consistent Model for Comparing Molecular Phylogenies. Journal of Computational Biology, 1995, 2, 493-507.	1.6	89
21	Thirtyâ€plus functional families from a single motif. Protein Science, 2000, 9, 2470-2476.	7.6	88
22	Sites Important for PLC \hat{i}^2 2 Activation by the G Protein $\hat{i}^2\hat{i}^3$ Subunit Map to the Sides of the \hat{i}^2 Propeller Structure. Journal of Biological Chemistry, 1998, 273, 28298-28304.	3.4	86
23	Functional conservation between members of an ancient duplicated transcription factor family, LSF/Grainyhead. Nucleic Acids Research, 2003, 31, 4304-4316.	14.5	84
24	A molecular sequence metric and evolutionary trees. Mathematical Biosciences, 1974, 19, 9-25.	1.9	80
25	The origin and evolution of the ribosome. Biology Direct, 2008, 3, 16.	4. 6	71
26	ARIADNE: pattern-directed inference and hierarchical abstraction in protein structure recognition. Communications of the ACM, 1987, 30, 909-921.	4.5	68
27	LFG: a candidate apoptosis regulatory gene family. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 1255-1265.	4.9	64
28	The evolution of the thrombospondin gene family. Journal of Molecular Evolution, 1993, 36, 509-516.	1.8	63
29	Folding a WD Repeat Propeller. Journal of Biological Chemistry, 1998, 273, 9041-9049.	3.4	63
30	Ribosomal protein-sequence block structure suggests complex prokaryotic evolution with implications for the origin of eukaryotes. Molecular Phylogenetics and Evolution, 2004, 33, 615-625.	2.7	63
31	The evolution of Class II Aminoacylâ€ŧRNA synthetases and the first code. FEBS Letters, 2015, 589, 3499-3507.	2.8	59
32	Biology's new Rosetta stone. Nature, 1997, 385, 29-30.	27.8	56
33	Information-theoretic dissection of pairwise contact potentials. Proteins: Structure, Function and Bioinformatics, 2002, 49, 7-14.	2.6	50
34	Transcription Factor Map Alignment of Promoter Regions. PLoS Computational Biology, 2006, 2, e49.	3.2	50
35	Mapping of the lactose operator. Journal of Molecular Biology, 1971, 62, 139-169.	4.2	49
36	Prediction of a common structural domain in aminoacyl-tRNA synthetases through use of a new pattern-directed inference system. Biochemistry, 1987, 26, 6950-6957.	2.5	49

#	Article	IF	Citations
37	The challenges of genome sequence annotation or "The devil is in the details― Nature Biotechnology, 1997, 15, 1222-1223.	17.5	49
38	Genome-scale analysis of positionally relocated genes. Genome Research, 2007, 17, 1880-1887.	5 . 5	49
39	The Evolution of the Ribosome and the Genetic Code. Life, 2014, 4, 227-249.	2.4	48
40	The archaeal origins of the eukaryotic translational system. Archaea, 2006, 2, 1-9.	2.3	41
41	Analysis of the Physical Properties and Molecular Modeling of Sec13: A WD Repeat Protein Involved in Vesicular Trafficâ€. Biochemistry, 1996, 35, 15215-15221.	2.5	40
42	Current Limitations to Protein Threading Approaches. Journal of Computational Biology, 1997, 4, 217-225.	1.6	40
43	Algorithms for restriction map comparisons. Nucleic Acids Research, 1984, 12, 237-242.	14.5	39
44	Corruption of genomic databases with anomalous sequence. Nucleic Acids Research, 1992, 20, 2741-2747.	14 . 5	31
45	Yeast "Operons". Microbial & Comparative Genomics, 1998, 3, 133-140.	0.4	28
46	Identifying nature's protein lego set. Advances in Protein Chemistry, 2000, 54, 159-183.	4.4	27
47	Inferring genome-scale rearrangement phylogeny and ancestral gene order: a Drosophila case study. Genome Biology, 2007, 8, R236.	9.6	26
48	Origin of the Genetic Code Is Found at the Transition between a Thioester World of Peptides and the Phosphoester World of Polynucleotides. Life, 2019, 9, 69.	2.4	26
49	The genetic code, information density, and evolution. Mathematical Biosciences, 1969, 4, 179-187.	1.9	25
50	Functional genomics—bioinformatics is ready for the challenge. Trends in Genetics, 1998, 14, 291-293.	6.7	25
51	A homology identification method that combines protein sequence and structure information. Protein Science, 1998, 7, 2499-2510.	7.6	25
52	Techniques for multi-genome synteny analysis to overcome assembly limitations. Genome Informatics, 2006, 17, 152-61.	0.4	24
53	A modified Chou and Fasman protein structure algorithm. Bioinformatics, 1987, 3, 211-216.	4.1	22
54	Recognition of characteristic patterns in sets of functionally equivalent DNA sequences. Bioinformatics, 1987, 3, 223-227.	4.1	20

#	Article	IF	Citations
55	Alignment of protein sequences using secondary structure: a modified dynamic programming method. Protein Engineering, Design and Selection, 1990, 3, 577-581.	2.1	20
56	The binding domain structure of retinoblastomaâ€binding proteins. Protein Science, 1993, 2, 155-164.	7.6	18
57	A search method for homologs of small proteins. Ubiquitin-like proteins in prokaryotic cells?. Protein Engineering, Design and Selection, 2003, 16, 897-904.	2.1	18
58	Multiple domain protein diagnostic patterns. Protein Science, 1996, 5, 1240-1249.	7.6	17
59	The art of matchmaking: sequence alignment methods and their structural implications. Structure, 1999, 7, R7-R12.	3 . 3	17
60	Analysis and algorithms for protein sequence–structure alignment. New Comprehensive Biochemistry, 1998, 32, 227-283.	0.1	16
61	Protein fold recognition by total alignment probability. Proteins: Structure, Function and Bioinformatics, 2000, 40, 451-462.	2.6	16
62	A noncanonical WD-repeat protein from the cyanobacterium Synechocystis PCC6803: Structural and functional study. Protein Science, 2001, 10, 293-300.	7.6	16
63	GTPases and the origin of the ribosome. Biology Direct, 2010, 5, 36.	4.6	16
64	Trichomonas Transmembrane Cyclases Result from Massive Gene Duplication and Concomitant Development of Pseudogenes. PLoS Neglected Tropical Diseases, 2010, 4, e782.	3.0	16
65	Homology Model for the Ligand-Binding Domain of the Human Estrogen Receptor. Journal of Biomolecular Structure and Dynamics, 1998, 15, 841-851.	3 . 5	15
66	Protein constraints induced by multiframe encoding. Mathematical Biosciences, 1980, 49, 17-26.	1.9	14
67	Triage protein fold prediction. Proteins: Structure, Function and Bioinformatics, 2002, 48, 654-663.	2.6	11
68	The evolution of the cilium and the eukaryotic cell. Cytoskeleton, 2009, 66, 215-219.	4.4	11
69	Acid helix-turn activator motif. Proteins: Structure, Function and Bioinformatics, 1990, 8, 156-163.	2.6	10
70	Visible volume: A robust measure for protein structure characterization. Journal of Molecular Biology, 1997, 273, 338-348.	4.2	9
71	Pattern descriptors and the unidentified reading frame 6 human mtDNA dinucleotide-binding site. Proteins: Structure, Function and Bioinformatics, 1988, 3, 97-101.	2.6	8
72	Filtered neighbors threading. Proteins: Structure, Function and Bioinformatics, 1999, 37, 346-359.	2.6	7

#	Article	IF	CITATIONS
73	Pseudogenization of testis-specific Lfg5 predates human/Neanderthal divergence. Journal of Human Genetics, 2014, 59, 288-291.	2.3	7
74	Constraining ribosomal RNA conformational space. Nucleic Acids Research, 2005, 33, 5106-5111.	14.5	6
75	Sequence banks: Searching for sequence similarities. Nature, 1983, 301, 194-194.	27.8	5
76	Survey of human mitochondrial diseases using new genomic/proteomic tools. Genome Biology, 2001, 2, research0021.1.	9.6	5
77	Gene expansion in Trichomonas vaginalis: a case study on transmembrane cyclases. Genome Informatics, 2007, 18, 35-43.	0.4	5
78	Finite-state and reduced-parameter representations of protein backbone conformations. Journal of Computational Chemistry, 1994, 15, 300-312.	3.3	4
79	Performance of Threading Scoring Functions Designed Using New Optimization Method. Journal of Computational Biology, 1999, 6, 299-311.	1.6	4
80	How Alike are Two Trees?. American Mathematical Monthly, 1980, 87, 552.	0.3	2
81	A taxonomic distance applicable to paleontology. Mathematical Biosciences, 1980, 50, 285-295.	1.9	2
82	Molecular genetics and computer analyses. Bioinformatics, 1987, 3, 167-170.	4.1	2
83	Massively parallel symbolic induction of protein structure/function relationships. Lecture Notes in Computer Science, 1993, , 157-173.	1.3	2
84	Of how great significance?. Nature, 1987, 326, 749-749.	27.8	1
85	A method for optimal design of a threading scoring function. , 1999, , .		1
86	Prediction of interaction partners for orphan nuclear receptors by prior-based protein sequence profiles. Journal of Molecular Recognition, 2000, 13, 117-126.	2.1	0
87	Comprehensive statistical method for protein fold recognition. , 2000, , .		0
88	Sequence Patterns Diagnostic of Structure and Function., 1997,, 91-104.		0