Dimitris Dermatas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11951788/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi wall carbon nanotubes application for treatment of Cr(VI)-contaminated groundwater; Modeling of batch & column experiments. Chemosphere, 2021, 269, 128749.	8.2	64
2	Efficient Water Resources Management in Cr(VI) Impacted Water Bodies and Mobility of Potentially Toxic Metals in the Environment. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 407-408.	2.7	0
3	Nanomaterials application for heavy metals recovery from polluted water: The combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling. Chemosphere, 2018, 201, 716-729.	8.2	108
4	Chromium Removal with Environmentally Friendly Iron Nanoparticles in a Pilot Scale Study. Bulletin of Environmental Contamination and Toxicology, 2018, 101, 705-710.	2.7	8
5	Investigation of hexavalent chromium sorption in serpentine sediments. Journal of Contaminant Hydrology, 2017, 197, 29-38.	3.3	18
6	Waste management and research and the sustainable development goals: Focus on soil and groundwater pollution. Waste Management and Research, 2017, 35, 453-455.	3.9	21
7	Groundwater Modeling and Remediation Scenarios of a Hexavalent Chromium Plume Released from an Industrial Site. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 338-346.	2.7	4
8	The Origin of Hexavalent Chromium as a Critical Parameter for Remediation of Contaminated Aquifers. Bulletin of Environmental Contamination and Toxicology, 2017, 98, 331-337.	2.7	15
9	Occurrence, Origin and Transformation Processes of Geogenic Chromium in Soils and Sediments. Current Pollution Reports, 2016, 2, 224-235.	6.6	58
10	Evaluation of ettringite-related swelling mechanisms for treated chromite ore processing residue. Environmental Science and Pollution Research, 2015, 22, 738-744.	5.3	2
11	A quantitative XANES evaluation of the TCLP applicability in phosphate-induced lead stabilization for firing range soils. Environmental Earth Sciences, 2015, 73, 1641-1647.	2.7	5
12	Long-term environmental impact at an abandoned gold–silver enrichment plant: A case study in Mitsero, Cyprus. Engineering Geology, 2015, 184, 119-125.	6.3	13
13	Editorial. Journal of Hazardous Materials, 2015, 281, 1.	12.4	2
14	Origin and concentration profile of chromium in a Greek aquifer. Journal of Hazardous Materials, 2015, 281, 35-46.	12.4	62
15	Release of arsenic (As) and lead (Pb) from quicklime-sulfate stabilized/solidified soils under diffusion-controlled conditions. Environmental Monitoring and Assessment, 2010, 169, 259-265.	2.7	17
16	Forensic Investigations to Evaluate Sulfate-Induced Heave Attack on a Tunnel Shotcrete Liner. Journal of Materials in Civil Engineering, 2010, 22, 914-922.	2.9	19
17	Importance of Mineralogy in the Geoenvironmental Characterization and Treatment of Chromite Ore Processing Residue. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2010, 136, 510-521.	3.0	40
18	Microstructural Analyses of Cr(VI) Speciation in Chromite Ore Processing Residue (COPR). Environmental Science & Technology, 2009, 43, 5461-5466.	10.0	67

DIMITRIS DERMATAS

#	Article	IF	CITATIONS
19	Geoenvironmental Characterization to Assess Waste Stabilization/Solidification Treatment Performance and Sustainability. , 2008, , .		2
20	Reductive Treatment of Chromite Ore Processing Residue (COPR): Lessons from a Field Study. , 2008, , .		0
21	Phosphate Treatment of Firing Range Soils: Lead Fixation or Phosphorus Release?. Journal of Environmental Quality, 2008, 37, 47-56.	2.0	50
22	Current Knowledge on Heaving Mechanisms of Chromite Ore Processing Residue. , 2008, , .		2
23	Influence of X-Ray Diffraction Sample Preparation on Quantitative Mineralogy. Journal of Environmental Quality, 2007, 36, 487-497.	2.0	21
24	Application of the Rietveld method to assess chromium(VI) speciation in chromite ore processing residue. Journal of Hazardous Materials, 2007, 141, 370-377.	12.4	51
25	Arsenic and lead release from fly ash stabilized/solidified soils under modified semi-dynamic leaching conditions. Journal of Hazardous Materials, 2007, 141, 388-394.	12.4	84
26	Long-term treatment issues with chromite ore processing residue (COPR): Cr6+ reduction and heave. Journal of Hazardous Materials, 2007, 143, 629-635.	12.4	64
27	Phosphate application to firing range soils for Pb immobilization: The unclear role of phosphate. Journal of Hazardous Materials, 2007, 144, 1-14.	12.4	159
28	Electrokinetic treatment of firing ranges containing tungsten-contaminated soils. Journal of Hazardous Materials, 2007, 149, 562-567.	12.4	10
29	Chromium Leaching and Immobilization in Treated Soils. Environmental Engineering Science, 2006, 23, 77-87.	1.6	21
30	Ettringite-Induced Heave in Chromite Ore Processing Residue (COPR) upon Ferrous Sulfate Treatment. Environmental Science & Technology, 2006, 40, 5786-5792.	10.0	111
31	An evaluation of lead leachability from stabilized/solidified soils under modified semi-dynamic leaching conditions. Engineering Geology, 2006, 85, 67-74.	6.3	97
32	Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: Literature review and experimental study. Journal of Hazardous Materials, 2006, 136, 20-33.	12.4	294
33	Fate and behavior of metal(loid) contaminants in an organic matter-rich shooting range soil: Implications for remediation. Water, Air and Soil Pollution, 2006, 6, 143-155.	0.8	36
34	Optimum Dose Of Lime And Fly Ash For Treatment Of Hexavalent Chromium–Contaminated Soil. Water, Air and Soil Pollution, 2006, 6, 171-189.	0.8	21
35	Mechanisms of lead immobilization in treated soils. Land Contamination and Reclamation, 2006, 14, 43-56.	0.4	9
36	Effects of tungsten on environmental systems. Chemosphere, 2005, 61, 248-258.	8.2	152

DIMITRIS DERMATAS

#	Article	IF	CITATIONS
37	Arsenic immobilization by calcium–arsenic precipitates in lime treated soils. Science of the Total Environment, 2004, 330, 171-185.	8.0	182
38	An evaluation of arsenic release from monolithic solids using a modified semi-dynamic leaching test. Journal of Hazardous Materials, 2004, 116, 25-38.	12.4	96
39	Solubility, Sorption, and Soil Respiration Effects of Tungsten and Tungsten Alloys. Environmental Forensics, 2004, 5, 5-13.	2.6	91
40	Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engineering Geology, 2003, 70, 377-394.	6.3	456
41	Ettringite-Induced Swelling in Soils: State-of-the-Art. Applied Mechanics Reviews, 1995, 48, 659-673.	10.1	88