Patrick Murmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11950943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigations on novel electrolytes, solvents and SEI additives for use in lithium-ion batteries: Systematic electrochemical characterization and detailed analysis by spectroscopic methods. Progress in Solid State Chemistry, 2014, 42, 65-84.	7.2	176
2	Phosphorus additives for improving high voltage stability and safety of lithium ion batteries. Journal of Fluorine Chemistry, 2017, 198, 24-33.	1.7	54
3	Influence of the Fluorination Degree of Organophosphates on Flammability and Electrochemical Performance in Lithium Ion Batteries: Studies on Fluorinated Compounds Deriving from Triethyl Phosphate. Journal of the Electrochemical Society, 2016, 163, A751-A757.	2.9	49
4	Investigations on the electrochemical performance and thermal stability of two new lithium electrolyte salts in comparison to LiPF6. Electrochimica Acta, 2013, 114, 658-666.	5.2	30
5	Fluorinated Electrolyte Compound as a Bi-Functional Interphase Additive for Both, Anodes and Cathodes in Lithium-Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A3525-A3530.	2.9	29
6	Lithium-cyclo-difluoromethane-1,1-bis(sulfonyl)imide as a stabilizing electrolyte additive for improved high voltage applications in lithium-ion batteries. Physical Chemistry Chemical Physics, 2015, 17, 9352-9358.	2.8	24
7	Post-Mortem Investigations of Fluorinated Flame Retardants for Lithium Ion Battery Electrolytes by Gas Chromatography with Chemical Ionization. Electrochimica Acta, 2017, 246, 1042-1051.	5.2	18
8	Electrochemical and Thermal Investigations and Al Current Collector Dissolution Studies of Three Di-Lithium Salts in Comparison to LiPF ₆ Containing Electrolytes. Journal of the Electrochemical Society, 2013, 160, A535-A541.	2.9	15
9	Influence of the Fluorination Degree of Organophosphates on Flammability and Electrochemical Performance in Lithium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1935-A1942.	2.9	15
10	Shutdown potential adjustment of modified carbene adducts as additives for lithium ion battery electrolytes. Journal of Power Sources, 2017, 367, 72-79.	7.8	14
11	Electrochemical Performance and Thermal Stability Studies of Two Lithium Sulfonyl Methide Salts in Lithium-Ion Battery Electrolytes. Journal of the Electrochemical Society, 2015, 162, A1738-A1744.	2.9	13
12	Influence of lithium-cyclo-difluoromethane-1,1-bis(sulfonyl)imide as electrolyte additive on the reversibility of lithium metal batteries. Journal of Applied Electrochemistry, 2016, 46, 339-348.	2.9	3