Giorgio Tarzia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11949409/publications.pdf

Version: 2024-02-01

57631 40881 8,754 106 44 93 citations h-index g-index papers 110 110 110 6628 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modulation of anxiety through blockade of anandamide hydrolysis. Nature Medicine, 2003, 9, 76-81.	15.2	1,306
2	Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-α. Nature, 2003, 425, 90-93.	13.7	985
3	An endocannabinoid mechanism for stress-induced analgesia. Nature, 2005, 435, 1108-1112.	13.7	655
4	Characterization of the Fatty Acid Amide Hydrolase Inhibitor Cyclohexyl Carbamic Acid 3′-Carbamoyl-biphenyl-3-yl Ester (URB597): Effects on Anandamide and Oleoylethanolamide Deactivation. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 352-358.	1.3	398
5	Pharmacological Profile of the Selective FAAH Inhibitor KDS-4103 (URB597). CNS Neuroscience & Therapeutics, 2006, 12, 21-38.	4.0	331
6	Antidepressant-like Activity of the Fatty Acid Amide Hydrolase Inhibitor URB597 in a Rat Model of Chronic Mild Stress. Biological Psychiatry, 2007, 62, 1103-1110.	0.7	314
7	Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nature Neuroscience, 2010, 13, 1265-1270.	7.1	289
8	Cyclohexylcarbamic Acid 3â€~- or 4â€~-Substituted Biphenyl-3-yl Esters as Fatty Acid Amide Hydrolase Inhibitors: Synthesis, Quantitative Structureâ°'Activity Relationships, and Molecular Modeling Studies. Journal of Medicinal Chemistry, 2004, 47, 4998-5008.	2.9	255
9	Selective inhibition of 2-AG hydrolysis enhances endocannabinoid signaling in hippocampus. Nature Neuroscience, 2005, 8, 1139-1141.	7.1	210
10	Selective $\langle i \rangle N \langle i \rangle$ -acylethanolamine-hydrolyzing acid amidase inhibition reveals a key role for endogenous palmitoylethanolamide in inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20966-20971.	3.3	206
11	The Fatty Acid Amide Hydrolase Inhibitor URB597 (Cyclohexylcarbamic Acid 3′-Carbamoylbiphenyl-3-yl) Tj ETQ Experimental Therapeutics, 2007, 322, 236-242.	Qq1 1 0.78 1.3	34314 rgBT /O 168
12	Design, Synthesis, and Structureâ [^] Activity Relationships of Alkylcarbamic Acid Aryl Esters, a New Class of Fatty Acid Amide Hydrolase Inhibitors. Journal of Medicinal Chemistry, 2003, 46, 2352-2360.	2.9	160
13	Synthesis and characterization of a peripherally restricted CB1 cannabinoid antagonist, URB447, that reduces feeding and body-weight gain in mice. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 639-643.	1.0	114
14	Promotion of Non-Rapid Eye Movement Sleep and Activation of Reticular Thalamic Neurons by a Novel MT ₂ Melatonin Receptor Ligand. Journal of Neuroscience, 2011, 31, 18439-18452.	1.7	113
15	2-[N-Acylamino(C1â^'C3)alkyl]indoles as MT1Melatonin Receptor Partial Agonists, Antagonists, and Putative Inverse Agonists. Journal of Medicinal Chemistry, 1998, 41, 3624-3634.	2.9	101
16	Antinociceptive effects of the N-acylethanolamine acid amidase inhibitor ARN077 in rodent pain models. Pain, 2013, 154, 350-360.	2.0	98
17	URB602 Inhibits Monoacylglycerol Lipase andÂSelectively Blocks 2-Arachidonoylglycerol Degradation in Intact Brain Slices. Chemistry and Biology, 2007, 14, 1357-1365.	6.2	93
18	Endocannabinoids in the Treatment of Mood Disorders: Evidence from Animal Models. Current Pharmaceutical Design, 2009, 15, 1623-1646.	0.9	85

#	Article	IF	CITATIONS
19	2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine and Analogues as A2AAdenosine Receptor Antagonists. Design, Synthesis, and Pharmacological Characterization. Journal of Medicinal Chemistry, 2005, 48, 6887-6896.	2.9	81
20	Pharmacological Characterization of Hydrolysis-Resistant Analogs of Oleoylethanolamide with Potent Anorexiant Properties. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 563-570.	1.3	79
21	N-(Substituted-anilinoethyl)amides: Design, Synthesis, and Pharmacological Characterization of a New Class of Melatonin Receptor Ligands. Journal of Medicinal Chemistry, 2007, 50, 6618-6626.	2.9	78
22	Conformational Effects in Enzyme Catalysis: Reaction via a High Energy Conformation in Fatty Acid Amide Hydrolase. Biophysical Journal, 2007, 92, L20-L22.	0.2	77
23	Analysis of Structureâ^'Activity Relationships for MT2Selective Antagonists by Melatonin MT1and MT2Receptor Models. Journal of Medicinal Chemistry, 2005, 48, 4049-4060.	2.9	75
24	Conformationally Restrained Melatonin Analogues:Â Synthesis, Binding Affinity for the Melatonin Receptor, Evaluation of the Biological Activity, and Molecular Modeling Study. Journal of Medicinal Chemistry, 1997, 40, 1990-2002.	2.9	73
25	Melatonin Receptor Ligands: Â Synthesis of New Melatonin Derivatives and Comprehensive Comparative Molecular Field Analysis (CoMFA) Study. Journal of Medicinal Chemistry, 1998, 41, 3831-3844.	2.9	71
26	A Potent Systemically Active <i>N</i> -Acylethanolamine Acid Amidase Inhibitor that Suppresses Inflammation and Human Macrophage Activation. ACS Chemical Biology, 2015, 10, 1838-1846.	1.6	71
27	A Second Generation of Carbamateâ€Based Fatty Acid Amide Hydrolase Inhibitors with Improved Activity inâ€vivo. ChemMedChem, 2009, 4, 1505-1513.	1.6	68
28	Selective melatonin MT2 receptor ligands relieve neuropathic pain through modulation of brainstem descending antinociceptive pathways. Pain, 2015, 156, 305-317.	2.0	68
29	Synthesis and Quantitative Structureâ 'Activity Relationship of Fatty Acid Amide Hydrolase Inhibitors: Modulation at the N-Portion of Biphenyl-3-yl Alkylcarbamates. Journal of Medicinal Chemistry, 2008, 51, 3487-3498.	2.9	67
30	Identification of productive inhibitor binding orientation in fatty acid amide hydrolase (FAAH) by QM/MM mechanistic modelling. Chemical Communications, 2008, , 214-216.	2.2	65
31	QM/MM modelling of oleamide hydrolysis in fatty acid amide hydrolase (FAAH) reveals a new mechanism of nucleophile activation. Chemical Communications, 2005, , 4399.	2.2	62
32	Melatonin antagonizes apoptosis via receptor interaction in U937 monocytic cells. Journal of Pineal Research, 2007, 43, 154-162.	3.4	62
33	Anxiolytic effects of the melatonin MT2 receptor partial agonist UCM765: Comparison with melatonin and diazepam. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2012, 39, 318-325.	2.5	60
34	Synthesis and Structure-Activity Relationships of FAAH Inhibitors: Cyclohexylcarbamic Acid Biphenyl Esters with Chemical Modulation at the Proximal Phenyl Ring. ChemMedChem, 2006, 1, 130-139.	1.6	59
35	Melatonin Receptor Agonists: SAR and Applications to the Treatment of Sleep-Wake Disorders. Current Topics in Medicinal Chemistry, 2008, 8, 954-968.	1.0	59
36	Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes. Toxicology and Applied Pharmacology, 2009, 239, 37-45.	1.3	58

#	Article	IF	CITATIONS
37	Three-Dimensional Quantitative Structureâ^'Activity Relationship Studies on Selected MT1 and MT2 Melatonin Receptor Ligands:  Requirements for Subtype Selectivity and Intrinsic Activity Modulation. Journal of Medicinal Chemistry, 2003, 46, 1429-1439.	2.9	57
38	2-N-Acylaminoalkylindoles:  Design and Quantitative StructureⰒActivity Relationship Studies Leading to MT2-Selective Melatonin Antagonists. Journal of Medicinal Chemistry, 2001, 44, 2900-2912.	2.9	56
39	Synthesis and SAR of New 5-Phenyl-3-ureido-1,5-benzodiazepines as Cholecystokinin-B Receptor Antagonists. Journal of Medicinal Chemistry, 2000, 43, 3596-3613.	2.9	54
40	<i>N</i> -Acylethanolamine Acid Amidase (NAAA): Structure, Function, and Inhibition. Journal of Medicinal Chemistry, 2020, 63, 7475-7490.	2.9	54
41	Recent advances in the development of melatonin MT ₁ and MT ₂ receptor agonists. Expert Opinion on Therapeutic Patents, 2010, 20, 1059-1077.	2.4	53
42	Synthesis and Structureâ [^] 'Activity Relationships of N-(2-Oxo-3-oxetanyl)amides as N-Acylethanolamine-hydrolyzing Acid Amidase Inhibitors. Journal of Medicinal Chemistry, 2010, 53, 5770-5781.	2.9	53
43	1-(2-Alkanamidoethyl)-6-methoxyindole Derivatives:Â A New Class of Potent Indole Melatonin Analogues. Journal of Medicinal Chemistry, 1997, 40, 2003-2010.	2.9	50
44	<i>N</i> -(2-Oxo-3-oxetanyl)carbamic Acid Esters as <i>N</i> -Acylethanolamine Acid Amidase Inhibitors: Synthesis and Structureâ€"Activity and Structureâ€"Property Relationships. Journal of Medicinal Chemistry, 2012, 55, 4824-4836.	2.9	48
45	Synthesis, pharmacological characterization and QSAR studies on 2-substituted indole melatonin receptor ligands. Bioorganic and Medicinal Chemistry, 2001, 9, 1045-1057.	1.4	45
46	Synthesis and biological activity of new melatonin dimeric derivatives. Bioorganic and Medicinal Chemistry, 2007, 15, 4643-4650.	1.4	45
47	Synthesis of (<i>E</i>)-8-(3-Chlorostyryl)caffeine Analogues Leading to 9-Deazaxanthine Derivatives as Dual A _{2A} Antagonists/MAO-B Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 1247-1261.	2.9	45
48	Synthesis and Structure–Activity Relationship (SAR) of 2-Methyl-4-oxo-3-oxetanylcarbamic Acid Esters, a Class of Potent <i>N</i> -Acylethanolamine Acid Amidase (NAAA) Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 6917-6934.	2.9	43
49	Tandem mass spectrometric data-FAAH inhibitory activity relationships of some carbamic acidO-aryl esters. Journal of Mass Spectrometry, 2004, 39, 1450-1455.	0.7	41
50	Structure–Property Relationships of a Class of Carbamateâ€Based Fatty Acid Amide Hydrolase (FAAH) Inhibitors: Chemical and Biological Stability. ChemMedChem, 2009, 4, 1495-1504.	1.6	40
51	Indole-based analogs of melatonin: in vitro antioxidant and cytoprotective activities. Journal of Pineal Research, 2004, 36, 95-102.	3.4	39
52	Novel 1,5-Benzodiazepines as CCK-B Ligands. Effect of Aryl-Carbamic Substituents at the C-3 Position Together with Halogen Substitution on the Benzo-Fused Ring. Archiv Der Pharmazie, 1997, 330, 353-357.	2.1	36
53	\hat{l}^2 -Lactones Inhibit <i>N</i> -acylethanolamine Acid Amidase by S-Acylation of the Catalytic N-Terminal Cysteine. ACS Medicinal Chemistry Letters, 2012, 3, 422-426.	1.3	36
54	Quantum Mechanics/Molecular Mechanics Modeling of Fatty Acid Amide Hydrolase Reactivation Distinguishes Substrate from Irreversible Covalent Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 2500-2512.	2.9	35

#	Article	IF	CITATIONS
55	A new melatonin receptor ligand with mt1-agonist and MT2-antagonist properties. Journal of Pineal Research, 2000, 29, 234-240.	3.4	33
56	Alkyl 2-(Diphenylmethyleneamino) acrylates in the Synthesis of \hat{l} ±-Amino Acids. Synthesis, 1988, 1988, 514-517.	1.2	32
57	Synthesis, antioxidant activity and structure-activity relationships for a new series of 2-(N-acylaminoethyl)indoles with melatonin-like cytoprotective activity. Journal of Pineal Research, 2006, 40, 259-269.	3.4	31
58	Tricyclic Alkylamides as Melatonin Receptor Ligands with Antagonist or Inverse Agonist Activity. Journal of Medicinal Chemistry, 2004, 47, 4202-4212.	2.9	30
59	<i>N</i> â€(Anilinoethyl)amides: Design and Synthesis of Metabolically Stable, Selective Melatonin Receptor Ligands. ChemMedChem, 2009, 4, 1746-1755.	1.6	30
60	Understanding the role of carbamate reactivity in fatty acid amide hydrolase inhibition by QM/MM mechanistic modelling. Chemical Communications, 2011, 47, 2517.	2.2	29
61	Synthesis and structure–activity relationships of a series of pyrrole cannabinoid receptor agonists. Bioorganic and Medicinal Chemistry, 2003, 11, 3965-3973.	1.4	28
62	Reassessing the melatonin pharmacophoreâ€"Enantiomeric resolution, pharmacological activity, structure analysis, and molecular modeling of a constrained chiral melatonin analogue. Bioorganic and Medicinal Chemistry, 2006, 14, 3383-3391.	1.4	28
63	Melatonin, selective and non-selective MT1/MT2 receptors agonists: Differential effects on the 24-h vigilance states. Neuroscience Letters, 2014, 561, 156-161.	1.0	27
64	Design and Synthesis of N-(3,3-Diphenylpropenyl) alkanamides as a Novel Class of High-Affinity MT2-Selective Melatonin Receptor Ligands. Journal of Medicinal Chemistry, 2006, 49, 7393-7403.	2.9	25
65	Synthesis of benzo[1,2-d;3,4-d′]diimidazole and 1H-pyrazolo[4,3-b]pyridine as putative A2A receptor antagonists. Organic and Biomolecular Chemistry, 2007, 5, 2567.	1.5	24
66	Toward the Definition of Stereochemical Requirements for MT ₂ -Selective Antagonists and Partial Agonists by Studying 4-Phenyl-2-propionamidotetralin Derivatives. Journal of Medicinal Chemistry, 2011, 54, 8362-8372.	2.9	24
67	MT ₁ $\hat{a}\in S$ elective Melatonin Receptor Ligands: Synthesis, Pharmacological Evaluation, and Molecular Dynamics Investigation of <i>N</i> $\hat{a}\in \{[(3\hat{a}\in \bullet)\circ O\hat{a}\in S$ ubstituted)anilino]alkyl}amides. ChemMedChem, 2012, 7, 1954-1964.	1.6	24
68	Synthesis and Structure–Activity Relationship Studies of <i>O</i> -Biphenyl-3-yl Carbamates as Peripherally Restricted Fatty Acid Amide Hydrolase Inhibitors. Journal of Medicinal Chemistry, 2013, 56, 5917-5930.	2.9	24
69	The fatty-acid amide hydrolase inhibitor URB597 does not affect triacylglycerol hydrolysis in rat tissues. Pharmacological Research, 2006, 54, 341-344.	3.1	23
70	3â€Aminoazetidinâ€2â€one Derivatives as <i>N</i> â€Acylethanolamine Acid Amidase (NAAA) Inhibitors Suitable for Systemic Administration. ChemMedChem, 2014, 9, 1602-1614.	1.6	23
71	(E)-3-(2-(N-Phenylcarbamoyl)vinyl)pyrrole-2-carboxylic Acid Derivatives. A Novel Class of Glycine Site Antagonists. Journal of Medicinal Chemistry, 1998, 41, 808-820.	2.9	22
72	Biphenyl-3-yl alkylcarbamates as fatty acid amide hydrolase (FAAH) inhibitors: Steric effects of N-alkyl chain on rat plasma and liver stability. European Journal of Medicinal Chemistry, 2011, 46, 4466-4473.	2.6	20

#	Article	IF	CITATIONS
73	Reactions of 3-carbomethoxy-2-aza-1,3-butadiene derivatives with dienophiles. Tetrahedron, 1994, 50, 12375-12394.	1.0	19
74	Antioxidant and Cytoprotective Activity of Indole Derivatives Related to Melatonin. Advances in Experimental Medicine and Biology, 2003, 527, 567-575.	0.8	18
75	New ligand bearing preorganized binding side-arms interacting with ammonium cations: Synthesis, conformational studies and crystal structureElectronic supplementary information (ESI) available: molecular modeling studies. See http://www.rsc.org/suppdata/nj/b3/b306778e/. New Journal of Chemistry. 2003. 27. 1575.	1.4	17
76	Identification of a Bioactive Impurity in a Commercial Sample of 6â€Methylâ€2â€ <i>p</i> à€Tolylaminobenzo[<i>d</i>][1,3]Oxazinâ€4â€One (URB754). Annali Di Chimica, 2007, 887-894.	D Z6	17
77	Synthesis and Biological Evaluation of Metabolites of 2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine (ST1535), A Potent Antagonist of the A2A Adenosine Receptor for the Treatment of Parkinson's Disease. Journal of Medicinal Chemistry, 2013, 56, 5456-5463.	2.9	17
78	Positive-ion mass spectra and collision-induced dissociation of some 2,3-didehydro amino acids. Organic Mass Spectrometry, 1990, 25, 540-549.	1.3	15
79	Structure-Affinity Relationships of Indole-Based Melatonin Analogs. NeuroSignals, 1999, 8, 15-23.	0.5	15
80	Direct B-Alkyl Suzukiâ^'Miyaura Cross-Coupling of 2-Halopurines. Practical Synthesis of ST1535, a Potent Adenosine A _{2A} Receptor Antagonist. Journal of Organic Chemistry, 2010, 75, 5398-5401.	1.7	15
81	4,5â€Dihydroisoxazole and 4,5â€dihydroâ€1,2,4â€oxadiazole derivatives from cycloaddition reactions of nitrile oxides to alkyl <i>N</i> àê(diphenylmethylene)â€Î±,βâ€dehydroamino acids. Journal of Heterocyclic Chemistry, 1992, 29, 1593-1598.	1.4	13
82	Bivalent ligand approach on N-{2-[(3-methoxyphenyl)methylamino]ethyl}acetamide: Synthesis, binding affinity and intrinsic activity for MT1 and MT2 melatonin receptors. Bioorganic and Medicinal Chemistry, 2011, 19, 4910-4916.	1.4	13
83	Towards the Development of Mixed MT1-Agonist/MT2-Antagonist Melatonin Receptor Ligands. ChemMedChem, 2006, 1, 1099-1105.	1.6	12
84	MT2 selective melatonin receptor antagonists: design and structure-activity relationships. Arkivoc, 2006, 2006, 8-16.	0.3	12
85	Synthesis, Enantiomeric Resolution, and Structure–Activity Relationship Study of a Series of 10,11â€Dihydroâ€5 <i>H</i> à€Dibenzo[a,d]cycloheptene MT ₂ Receptor Antagonists. ChemMedChei 2007, 2, 1741-1749.	1 1, ,6	11
86	Structural determinants of peripheral O-arylcarbamate FAAH inhibitors render them dual substrates for Abcb1 and Abcg2 and restrict their access to the brain. Pharmacological Research, 2014, 87, 87-93.	3.1	11
87	Application of 3D-QSAR in the Rational Design of Receptor Ligands and Enzyme Inhibitors. Chemistry and Biodiversity, 2005, 2, 1438-1451.	1.0	9
88	Correlation between energetics of collisionally activated decompositions, interaction energy and biological potency of carbamate FAAH inhibitors. Journal of Mass Spectrometry, 2007, 42, 1624-1627.	0.7	9
89	Pharmacokinetics, pharmacodynamics and safety studies on URB937, a peripherally restricted fatty acid amide hydrolase inhibitor, in rats. Journal of Pharmacy and Pharmacology, 2019, 71, 1762-1773.	1.2	9
90	Electron impact ionization and fast atom bombardment mass spectrometry of some 3,3-dimethyl-1-(isoxazol-3-yl)triazenes, a new class of potential anticancer agents. Journal of Mass Spectrometry, 1995, 30, 1567-1573.	0.7	8

#	Article	IF	CITATIONS
91	Indole Melatonin Agonists and Antagonists Derived by Shifting the Melatonin Side Chain from the C-3 to the N-1 or to the C-2 Indole Position. NeuroSignals, 1999, 8, 24-31.	0.5	8
92	Characterization of [3 H]zetidoline binding to rat striatal membranes. Journal of Pharmacy and Pharmacology, 2011, 37, 180-187.	1.2	8
93	Towards the development of 5-HT7 ligands combining serotonin-like and arylpiperazine moieties. European Journal of Medicinal Chemistry, 2014, 80, 8-35.	2.6	8
94	N-(DIPHENYLMETHYLENE)-α,β-DIDEHYDROAMINO ACID ESTERS. THERMAL AND LEWIS ACID INDUCED DIMERIZATIONS. Organic Preparations and Procedures International, 1991, 23, 122-125.	0.6	7
95	Letter to the Editor: Correlation of the mutagenic properties of aryl- and heteroaryltriazenes with their electron ionization induced fragmentation. Rapid Communications in Mass Spectrometry, 1996, 10, 1156-1158.	0.7	7
96	Synthesis and Evaluation of 1,5-Benzodiazepines with Bridged Cycloalkyl Substituents at the N-1 Position as Potent and Selective CCK-B Ligands. Archiv Der Pharmazie, 1998, 331, 41-44.	2.1	7
97	3-(2-Carbamoylvinyl)-4,5-dimethylpyrrole-2-carboxylic acids as ligands at the NMDA glycine-binding site: a study on the 2-carbamoylvinyl chain modification. Il Farmaco, 1999, 54, 101-111.	0.9	7
98	Design and synthesis of melatonin receptors agonists and antagonists. Il Farmaco, 2000, 55, 184-187.	0.9	7
99	Correlation of the antimetastatic properties of aryltriazenes with their electron impact ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 1997, 11, 1365-1368.	0.7	6
100	On the formation of [H3CSSCH3]+. ions from the bis(dimethylthio)mercury molecular ion. Rapid Communications in Mass Spectrometry, 2006, 20, 3154-3158.	0.7	6
101	Divergent synthesis of novel 9-deazaxanthine derivatives via late-stage cross-coupling reactions. Organic and Biomolecular Chemistry, 2012, 10, 8860.	1.5	6
102	Zetidoline metabolism by rat liver microsomes. Biochemical Pharmacology, 1986, 35, 1459-1467.	2.0	5
103	The collisional behavior of ESIâ€generated protonated molecules of some carbamate FAAH inhibitors isosteres and its relationships with biological activity. Journal of Mass Spectrometry, 2009, 44, 561-565.	0.7	5
104	Metabolic fate of zetidoline, a new neuroleptic agent, in man. Naunyn-Schmiedeberg's Archives of Pharmacology, 1985, 328, 341-347.	1.4	3
105	Potent, Metabolically Stable 2â€Alkylâ€8â€(2 <i>H</i> à€1,2,3â€triazolâ€2â€yl)â€9 <i>H</i> â€adenines as Adenos A _{2A} Receptor Ligands. ChemMedChem, 2015, 10, 1149-1152.	sine 1.6	2
106	Strategies Leading To MT2 Selective Melatonin Receptor Antagonists. Advances in Experimental Medicine and Biology, 2003, 527, 577-585.	0.8	1