John A Flygare

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11949197/publications.pdf

Version: 2024-02-01

257450 454955 4,332 31 24 30 h-index citations g-index papers 31 31 31 5917 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Discovery of A-1331852, a First-in-Class, Potent, and Orally-Bioavailable BCL-X _L Inhibitor. ACS Medicinal Chemistry Letters, 2020, 11, 1829-1836.	2.8	74
2	Cyclodextrin Reduces Intravenous Toxicity of a Model Compound. Journal of Pharmaceutical Sciences, 2019, 108, 1934-1943.	3.3	12
3	Activityâ€based probes for the multicatalytic proteasome. FEBS Journal, 2017, 284, 1540-1554.	4.7	25
4	Activityâ€based probes for the ubiquitin conjugation–deconjugation machinery: new chemistries, new tools, and new insights. FEBS Journal, 2017, 284, 1555-1576.	4.7	109
5	Pyrrolobenzodiazepine Dimer Antibody–Drug Conjugates: Synthesis and Evaluation of Noncleavable Drug-Linkers. Journal of Medicinal Chemistry, 2017, 60, 9490-9507.	6.4	30
6	Decoupling stability and release in disulfide bonds with antibody-small molecule conjugates. Chemical Science, 2017, 8, 366-370.	7.4	88
7	Targeted drug delivery through the traceless release of tertiary and heteroaryl amines from antibody–drug conjugates. Nature Chemistry, 2016, 8, 1112-1119.	13.6	106
8	Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature, 2015, 527, 323-328.	27.8	663
9	Site-Specific Trastuzumab Maytansinoid Antibody–Drug Conjugates with Improved Therapeutic Activity through Linker and Antibody Engineering. Journal of Medicinal Chemistry, 2014, 57, 7890-7899.	6.4	86
10	Structure-Guided Rescaffolding of Selective Antagonists of BCL-X _L . ACS Medicinal Chemistry Letters, 2014, 5, 662-667.	2.8	37
11	Discovery of a Potent and Selective BCL-X _L Inhibitor with <i>in Vivo</i> Activity. ACS Medicinal Chemistry Letters, 2014, 5, 1088-1093.	2.8	242
12	Antibodyâ€Drug Conjugates for the Treatment of Cancer. Chemical Biology and Drug Design, 2013, 81, 113-121.	3.2	193
13	Structure-guided design of a selective BCL-XL inhibitor. Nature Chemical Biology, 2013, 9, 390-397.	8.0	324
14	Toxicity Profile of Small-Molecule IAP Antagonist GDC-0152 Is Linked to TNF-α Pharmacology. Toxicological Sciences, 2013, 131, 247-258.	3.1	29
15	Learning and Confirming with Preclinical Studies: Modeling and Simulation in the Discovery of GDC-0917, an Inhibitor of Apoptosis Proteins Antagonist. Drug Metabolism and Disposition, 2013, 41, 2104-2113.	3.3	43
16	Dogs Are More Sensitive to Antagonists of Inhibitor of Apoptosis Proteins Than Rats and Humans: A Translational Toxicokinetic/Toxicodynamic Analysis. Toxicological Sciences, 2012, 130, 205-213.	3.1	14
17	Discovery of a Potent Small-Molecule Antagonist of Inhibitor of Apoptosis (IAP) Proteins and Clinical Candidate for the Treatment of Cancer (GDC-0152). Journal of Medicinal Chemistry, 2012, 55, 4101-4113.	6.4	217
18	Antagonists of inhibitor of apoptosis proteins based on thiazole amide isosteres. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 2229-2233.	2.2	18

#	Article	IF	CITATIONS
19	Small-molecule pan-IAP antagonists: a patent review. Expert Opinion on Therapeutic Patents, 2010, 20, 251-267.	5.0	80
20	Development of novel drugs targeting inhibitors of apoptosis. Future Oncology, 2009, 5, 141-144.	2.4	7
21	Antagonism of c-IAP and XIAP Proteins Is Required for Efficient Induction of Cell Death by Small-Molecule IAP Antagonists. ACS Chemical Biology, 2009, 4, 557-566.	3.4	91
22	Orally Bioavailable Antagonists of Inhibitor of Apoptosis Proteins Based on an Azabicyclooctane Scaffold. Journal of Medicinal Chemistry, 2009, 52, 1723-1730.	6.4	43
23	IAP Antagonists Induce Autoubiquitination of c-IAPs, NF-κB Activation, and TNFα-Dependent Apoptosis. Cell, 2007, 131, 669-681.	28.9	1,124
24	Design, Synthesis, and Biological Activity of a Potent Smac Mimetic That Sensitizes Cancer Cells to Apoptosis by Antagonizing IAPs. ACS Chemical Biology, 2006, 1, 525-533.	3.4	171
25	Structure and Function Analysis of Peptide Antagonists of Melanoma Inhibitor of Apoptosis (ML-IAP). Biochemistry, 2003, 42, 8223-8231.	2.5	92
26	Combinatorial Chemistry in Steroid Receptor Drug Discovery. , 2001, 176, 353-358.		1
27	Solid-Phase Synthesis of 2-Aminoimidazolones. Organic Letters, 1999, 1, 1351-1353.	4.6	23
28	Solid-phase synthesis of disubstituted guanidines. Tetrahedron Letters, 1998, 39, 2663-2666.	1.4	48
29	Solid-Phase Synthesis of 2-Aminothiazoles. Journal of Organic Chemistry, 1998, 63, 196-200.	3.2	149
30	A synthesis of the spiroketal subunit of (â^')-calyculin A. Tetrahedron Letters, 1994, 35, 4059-4062.	1.4	53
31	A novel ruthenium-catalyzed tandem cyclization-reconstitutive addition of propargyl alcohols with allyl alcohols. Journal of the American Chemical Society, 1992, 114, 5476-5477.	13.7	140