
Laura A Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11947175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward Engineered Cells as Transformational and Broadly Available Medicines for the Treatment of Cancer. , 2018, , 695-717.		0
2	Checkpoint Blockade Reverses Anergy in IL-13Rα2 Humanized scFv-Based CAR T Cells to Treat Murine and Canine Gliomas. Molecular Therapy - Oncolytics, 2018, 11, 20-38.	2.0	123
3	Driving gene-engineered T cell immunotherapy of cancer. Cell Research, 2017, 27, 38-58.	5.7	232
4	Molecular imaging biomarkers for cell-based immunotherapies. Journal of Translational Medicine, 2017, 15, 140.	1.8	11
5	Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma. Immunity, 2016, 44, 1444-1454.	6.6	458
6	Rational development and characterization of humanized anti–EGFR variant III chimeric antigen receptor T cells for glioblastoma. Science Translational Medicine, 2015, 7, 275ra22.	5.8	369
7	Ex vivo generation of dendritic cells from cryopreserved, post-induction chemotherapy, mobilized leukapheresis from pediatric patients with medulloblastoma. Journal of Neuro-Oncology, 2015, 125, 65-74.	1.4	22
8	EGFRvIII-Specific Chimeric Antigen Receptor T Cells Migrate to and Kill Tumor Deposits Infiltrating the Brain Parenchyma in an Invasive Xenograft Model of Glioblastoma. PLoS ONE, 2014, 9, e94281.	1.1	99
9	Chimeric antigen receptor engineered T cells can eliminate brain tumors and initiate long-term protection against recurrence. Oncolmmunology, 2014, 3, e944059.	2.1	8
10	Recognition and Killing of Autologous, Primary Glioblastoma Tumor Cells by Human Cytomegalovirus pp65-Specific Cytotoxic T Cells. Clinical Cancer Research, 2014, 20, 2684-2694.	3.2	74
11	2 <scp>D TCR</scp> –p <scp>MHC</scp> – <scp>CD</scp> 8 kinetics determines <scp>T</scp> â€cell responses in a selfâ€antigenâ€specific <scp>TCR</scp> system. European Journal of Immunology, 2014, 44, 239-250.	1.6	57
12	Targeting Fibroblast Activation Protein in Tumor Stroma with Chimeric Antigen Receptor T Cells Can Inhibit Tumor Growth and Augment Host Immunity without Severe Toxicity. Cancer Immunology Research, 2014, 2, 154-166.	1.6	448
13	EGFRvIII mCAR-Modified T-Cell Therapy Cures Mice with Established Intracerebral Glioma and Generates Host Immunity against Tumor-Antigen Loss. Clinical Cancer Research, 2014, 20, 972-984.	3.2	254
14	Specific Increase in Potency via Structure-Based Design of a TCR. Journal of Immunology, 2014, 193, 2587-2599.	0.4	39
15	Engineered T cells for cancer therapy. Cancer Immunology, Immunotherapy, 2014, 63, 969-975.	2.0	105
16	Engineering the immune response to "self" for effective cancer immunotherapy. , 2014, 2, P22.		0
17	Glycopeptide-Specific Chimeric Antigen Receptor Targeting of T Cell Leukemia. Blood, 2014, 124, 4803-4803.	0.6	0
18	Antibody, T-cell and dendritic cell immunotherapy for malignant brain tumors. Future Oncology, 2013, 9, 977-990.	1.1	21

Laura A Johnson

#	Article	IF	CITATIONS
19	Engineering improved T cell receptors using an alanine-scan guided T cell display selection system. Journal of Immunological Methods, 2013, 392, 1-11.	0.6	28
20	T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6973-6978.	3.3	203
21	Myeloablative Temozolomide Enhances CD8+ T-Cell Responses to Vaccine and Is Required for Efficacy against Brain Tumors in Mice. PLoS ONE, 2013, 8, e59082.	1.1	56
22	Model T Muscle CARs Can Treat Brain Tumors. Clinical Cancer Research, 2012, 18, 5834-5836.	3.2	2
23	Recognition of Glioma Stem Cells by Genetically Modified T Cells Targeting EGFRvIII and Development of Adoptive Cell Therapy for Glioma. Human Gene Therapy, 2012, 23, 1043-1053.	1.4	266
24	Rapid Production of Clinical-Grade Gammaretroviral Vectors in Expanded Surface Roller Bottles Using a "Modified―Step-Filtration Process for Clearance of Packaging Cells. Human Gene Therapy, 2011, 22, 107-115.	1.4	18
25	Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood, 2011, 117, 808-814.	0.6	272
26	Enhanced receptor expression and in vitro effector function of a murine-human hybrid MART-1-reactive T cell receptor following a rapid expansion. Cancer Immunology, Immunotherapy, 2010, 59, 1551-1560.	2.0	35
27	Immunotherapy Approaches for Malignant Glioma From 2007 to 2009. Current Neurology and Neuroscience Reports, 2010, 10, 259-266.	2.0	41
28	Ocular and Systemic Autoimmunity after Successful Tumor-Infiltrating Lymphocyte Immunotherapy for Recurrent, Metastatic Melanoma. Ophthalmology, 2009, 116, 981-989.e1.	2.5	88
29	Tumor antigen–specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood, 2009, 114, 1537-1544.	0.6	1,481
30	Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood, 2009, 114, 535-546.	0.6	1,280
31	Single and Dual Amino Acid Substitutions in TCR CDRs Can Enhance Antigen-Specific T Cell Functions. Journal of Immunology, 2008, 180, 6116-6131.	0.4	319
32	Structures of MART-126/27–35 Peptide/HLA-A2 Complexes Reveal a Remarkable Disconnect between Antigen Structural Homology and T Cell Recognition. Journal of Molecular Biology, 2007, 372, 1123-1136.	2.0	90
33	Gene Transfer of Tumor-Reactive TCR Confers Both High Avidity and Tumor Reactivity to Nonreactive Peripheral Blood Mononuclear Cells and Tumor-Infiltrating Lymphocytes. Journal of Immunology, 2006, 177, 6548-6559.	0.4	287