Ke Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11946252/publications.pdf

Version: 2024-02-01

		430874	794594
19	1,703 citations	18	19
papers	citations	h-index	g-index
19	19	19	2609
	docs citations	times ranked	
all docs	does citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Transformation and kinetics of chlorine-containing products during pyrolysis of plastic wastes. Chemosphere, 2021, 284, 131348.	8.2	31
2	Preparation of high performance supercapacitor materials by fast pyrolysis of corn gluten meal waste. Sustainable Energy and Fuels, 2017, 1, 891-898.	4.9	28
3	Preparation of N-Doped Supercapacitor Materials by Integrated Salt Templating and Silicon Hard Templating by Pyrolysis of Biomass Wastes. ACS Sustainable Chemistry and Engineering, 2017, 5, 6682-6691.	6.7	105
4	One-pot synthesis of a carbon supported bimetallic Cu–Ag NPs catalyst for robust catalytic hydroxylation of benzene to phenol by fast pyrolysis of biomass waste. Green Chemistry, 2016, 18, 5643-5650.	9.0	51
5	Use of Nutrient Rich Hydrophytes to Create N,P-Dually Doped Porous Carbon with Robust Energy Storage Performance. Environmental Science & Environmenta	10.0	52
6	Improvement of phenol photodegradation efficiency by a combined g-C3N4/Fe(III)/persulfate system. Chemosphere, 2016, 148, 34-40.	8.2	74
7	Lab-scale thermal analysis of electronic waste plastics. Journal of Hazardous Materials, 2016, 310, 217-225.	12.4	42
8	Comparative Investigation on Photoreactivity and Mechanism of Biogenic and Chemosythetic Ag/C ₃ N ₄ Composites under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2015, 3, 269-276.	6.7	76
9	Improving Capacitance by Introducing Nitrogen Species and Defects into Graphene. ChemElectroChem, 2015, 2, 859-866.	3.4	12
10	Significant enhancement of photoreactivity of graphitic carbon nitride catalysts under acidic conditions and the underlying H+-mediated mechanism. Chemosphere, 2015, 141, 127-133.	8.2	22
11	Ultra-high capacity and selective immobilization of Pb through crystal growth of hydroxypyromorphite on amino-functionalized hydrochar. Journal of Materials Chemistry A, 2015, 3, 9843-9850.	10.3	30
12	One-pot synthesis of Ni–NiFe ₂ O ₄ /carbon nanofiber composites from biomass for selective hydrogenation of aromatic nitro compounds. Green Chemistry, 2015, 17, 821-826.	9.0	100
13	High-Yield Harvest of Nanofibers/Mesoporous Carbon Composite by Pyrolysis of Waste Biomass and Its Application for High Durability Electrochemical Energy Storage. Environmental Science & Emp; Technology, 2014, 48, 13951-13959.	10.0	173
14	Harvest of Cu NP anchored magnetic carbon materials from Fe/Cu preloaded biomass: their pyrolysis, characterization, and catalytic activity on aqueous reduction of 4-nitrophenol. Green Chemistry, 2014, 16, 4198.	9.0	135
15	Investigation on the Evolution of N-Containing Organic Compounds during Pyrolysis of Sewage Sludge. Environmental Science & En	10.0	223
16	Mesoporous Carbon Stabilized MgO Nanoparticles Synthesized by Pyrolysis of MgCl ₂ Preloaded Waste Biomass for Highly Efficient CO ₂ Capture. Environmental Science & Environmental	10.0	204
17	Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste. Scientific Reports, 2013, 3, 2419.	3 . 3	140
18	Preparation of liquid chemical feedstocks by co-pyrolysis of electronic waste and biomass without formation of polybrominated dibenzo-p-dioxins. Bioresource Technology, 2013, 128, 1-7.	9.6	67

#	ARTICLE	IF	CITATIONS
19	Selectively Improving the Bio-Oil Quality by Catalytic Fast Pyrolysis of Heavy-Metal-Polluted Biomass: Take Copper (Cu) as an Example. Environmental Science & Technology, 2012, 46, 7849-7856.	10.0	138