Zoya I Krutetskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1194423/publications.pdf

Version: 2024-02-01

1478505 1474206 39 109 9 6 citations g-index h-index papers 40 40 40 56 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sigma-1 Receptor Ligands Chlorpromazine and Trifluoperazine Attenuate Ca2+ Responses in Rat Peritoneal Macrophages. Cell and Tissue Biology, 2022, 16, 233-244.	0.4	3
2	The Sigma-1 Receptor Ligand Chlorpromazine Attenuates Store-Dependent Ca2+ Entry in Peritoneal Macrophages. Biophysics (Russian Federation), 2021, 66, 77-83.	0.7	1
3	Pyrazole Derivative Attenuates Store-Dependent Ca2+ Entry in Rat Peritoneal Macrophages. Cell and Tissue Biology, 2021, 15, 293-300.	0.4	O
4	Neuroleptic Chlorpromazine Modulates Ca2+ Responses in Macrophages. Doklady Biochemistry and Biophysics, 2020, 490, 25-28.	0.9	0
5	Sigma-1 Receptor Antagonists Haloperidol and Chlorpromazine Modulate the Effect of Glutoxim on Na+ Transport in Frog Skin. Doklady Biochemistry and Biophysics, 2019, 484, 63-65.	0.9	5
6	Phospholipase A2 Inhibitors Modulate the Effect of Trifluoperazine on the Intracellular Ca2+ Concentration in Macrophages. Doklady Biochemistry and Biophysics, 2018, 478, 41-43.	0.9	0
7	Trifluoperazine Attenuates Store-Dependent Ca2+ Entry in Macrophages. Doklady Biochemistry and Biophysics, 2018, 478, 44-46.	0.9	2
8	Inhibitors of the Metabolism of Arachidonic Acid Suppress Ca2+ Responses Induced by Trifluoperazine in Macrophages. Cell and Tissue Biology, 2018, 12, 315-322.	0.4	0
9	Epoxygenase Inhibitors Attenuate the Stimulatory Effect of Glutoxim on Na+ Transport in Frog Skin. Doklady Biochemistry and Biophysics, 2018, 480, 152-154.	0.9	1
10	Methyl-Î ² -cyclodextrin modulates thapsigargin-induced store-dependent Ca2+ entry in macrophages. Doklady Biochemistry and Biophysics, 2017, 473, 88-90.	0.9	3
11	Sigma-1 receptor antagonist haloperidol attenuates Ca2+ responses induced by glutoxim and molixan in macrophages. Doklady Biochemistry and Biophysics, 2017, 472, 74-76.	0.9	2
12	Lipoxygenases modulate the effect of glutoxim on Na+ transport in the frog skin epithelium. Doklady Biochemistry and Biophysics, 2017, 474, 193-195.	0.9	4
13	The effect of chlorpromazine on intracellular Ca2+ concentration in macrophages. Doklady Biochemistry and Biophysics, 2017, 474, 162-164.	0.9	3
14	Methyl- \hat{l}^2 -cyclodextrin inhibits Ca2+-responses induced by glutoxim and molixan in macrophages. Doklady Biochemistry and Biophysics, 2016, 471, 390-392.	0.9	1
15	The inhibitors of Arp2/3 complex and WASP proteins modulate the effect of glutoxim on Na+transport in frog skin. Doklady Biochemistry and Biophysics, 2016, 467, 102-104.	0.9	0
16	5-Lipoxygenase inhibitor zileuton inhibits Ca2+-responses induced by glutoxim and molixan in macrophages. Doklady Biochemistry and Biophysics, 2016, 469, 302-304.	0.9	3
17	Phospholipase A2 inhibitors modulate the effects of glutoxim and molixan on the intracellular Ca2+ level in macrophages. Doklady Biochemistry and Biophysics, 2015, 465, 374-376.	0.9	1
18	Involvement of the Arp2/3 complex and WASP proteins in the effect of glutoxim and molixan on intracellular Ca2+ concentration in macrophages. Doklady Biochemistry and Biophysics, 2015, 464, 279-282.	0.9	0

#	Article	IF	Citations
19	Microtubular disrupter nocodazole and vesicular transport inhibitor brefeldin A attenuate the glutoxim effect on Na+ transport in frog skin. Biophysics (Russian Federation), 2014, 59, 718-720.	0.7	1
20	Arp2/3 complex is involved in the effect of glutoxim and molixan on intracellular Ca2+ concentration in macrophages. Biophysics (Russian Federation), 2014, 59, 736-740.	0.7	0
21	Involvement of small G proteins and vesicle traffic in the glutoxim and molixan effects on the intracellular Ca2+ concentration in macrophages. Doklady Biological Sciences, 2014, 457, 252-254.	0.6	1
22	Cyclooxygenase and lipoxygenase inhibitors modulate the Glutoxim and Molixan effects on the intracellular Ca2+ concentration in macrophages. Doklady Biological Sciences, 2013, 452, 277-279.	0.6	2
23	Inhibitors of the cyclooxygenase oxidation pathway of arachidonic acid suppress the stimulating effect of glutoxim on Na+ transport in frog skin. Doklady Biological Sciences, 2013, 451, 193-195.	0.6	5
24	Involvement of microtubules in the effects of glutoxim and molixan on the intracellular concentration of Ca2+ in macrophages. Doklady Biological Sciences, 2013, 451, 196-198.	0.6	0
25	Involvement of microtubules in the glutoxim regulation of Na+ transport in the frog skin. Doklady Biological Sciences, 2012, 445, 227-229.	0.6	1
26	The involvement of actin cytoskeleton in glutoxim and molixan effect on intracellular Ca2+-concentration in macrophages. Cell and Tissue Biology, 2012, 6, 240-247.	0.4	3
27	The effect of glutoxim on Na+ transport in frog skin: The role of cytoskeleton. Cell and Tissue Biology, 2012, 6, 248-253.	0.4	1
28	Involvement of actin filaments in the effect of the oxidized glutathione and drug glutoxim on the intracellular Ca2+ concentration in macrophages. Doklady Biological Sciences, 2011, 436, 16-19.	0.6	2
29	Involvement of tyrosine and phosphatidylinositol kinases in oxidized glutathione and glutoxim regulation of Na+ transport in frog skin. Cell and Tissue Biology, 2010, 4, 273-279.	0.4	1
30	The role of the key enzymes of the phosphoinositide signaling pathway in the effect of oxidized glutathione and glutoxim on intracellular Ca2+ concentration in macrophages. Doklady Biological Sciences, 2009, 428, 407-409.	0.6	6
31	Involvement of phosphatidylinositol kinases in the effect of oxidized glutathione and drug glutoxim on Na+ transport in frog skin. Doklady Biological Sciences, 2009, 428, 416-417.	0.6	1
32	The effect of oxidized glutathione and its pharmacological analogue glutoxim on intracellular Ca2+ concentration in macrophages Ca2+. Cell and Tissue Biology, 2008, 2, 322-332.	0.4	13
33	Effect of disulfide-containing compounds on the Na+ transport in the frog skin. Doklady Biological Sciences, 2008, 421, 235-238.	0.6	8
34	Possible involvement of phosphatidylinositol kinases in the effect of the oxidized glutathione and glutoxim on the intracellular Ca2+ concentration in macrophages. Doklady Biological Sciences, 2008, 422, 296-297.	0.6	7
35	The possible involvement of calcium ions in the regulatory effect of oxidized glutathione on macrophages. Doklady Biological Sciences, 2007, 412, 11-14.	0.6	8
36	The role of tyrosine kinases and tyrosine phosphatases in the effect of glutoxim and oxidized glutathione on the intracellular Ca2+ concentration in macrophages. Doklady Biological Sciences, 2007, 417, 417-419.	0.6	7

3

ZOYA I KRUTETSKAYA

#	Article	IF	CITATIONS
37	The role of the actin cytoskeleton in the regulation of Na+ transport by phosphatidylinositol kinases in the frog skin. Doklady Biological Sciences, 2006, 410, 367-369.	0.6	4
38	Delayed-rectifying potassium channels in mouse peritoneal macrophages: Pharmacological analysis. Neurophysiology, 1995, 26, 40-44.	0.3	0
39	Displacement currents in sodium channels of the ranvier node membrane. Neurophysiology, 1977, 8, 314-319.	0.3	O