Minna Pirhonen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/119441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-Quality Complete Genome Resource of <i>Pectobacterium parvum</i> Isolate FN20211 CausingÂAerial Stem Rot of Potato. Molecular Plant-Microbe Interactions, 2022, 35, 488-491.	1.4	2
2	Pectobacterium and Dickeya: Taxonomy and Evolution. , 2021, , 13-37.		11
3	Pectobacterium and Dickeya: Environment to Disease Development. , 2021, , 39-84.		27
4	Dual Transcriptional Profiling of Carrot and â€~ <i>Candidatus</i> Liberibacter solanacearum' at Different Stages of Infection Suggests Complex Host-Pathogen Interaction. Molecular Plant-Microbe Interactions, 2021, 34, 1281-1297.	1.4	2
5	Pectobacterium parvum sp. nov., having a Salmonella SPI-1-like Type III secretion system and low virulence. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 2440-2448.	0.8	51
6	Effect of wet storage conditions on potato tuber transcriptome, phytohormones and growth. BMC Plant Biology, 2019, 19, 262.	1.6	11
7	Biological control of potato soft rot caused by <i>Dickeya solani</i> and the survival of bacterial antagonists under cold storage conditions. Plant Pathology, 2019, 68, 297-311.	1.2	30
8	Genome sequence of the model plant pathogen Pectobacterium carotovorum SCC1. Standards in Genomic Sciences, 2017, 12, 87.	1.5	16
9	Evidence that nematodes may vector the soft rotâ€causing enterobacterial phytopathogens. Plant Pathology, 2014, 63, 747-757.	1.2	17
10	Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum) Tj ETQq0 0	0 rgBT /Ove	rlock 10 Tf 50 228
11	Dickeya aquatica sp. nov., isolated from waterways. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2264-2266.	0.8	92
12	Characterisation of <i>Pectobacterium wasabiae</i> and <i>Pectobacterium carotovorum</i> subsp. <i>carotovorum</i> isolates from diseased potato plants in Finland. Annals of Applied Biology, 2013, 163, 403-419.	1.3	30
13	Genome Sequence of Dickeya solani, a New soft Rot Pathogen of Potato, Suggests its Emergence May Be Related to a Novel Combination of Non-Ribosomal Peptide/Polyketide Synthetase Clusters. Diversity, 2013, 5, 824-842.	0.7	54
14	Lack of RsmA-Mediated Control Results in Constant Hypervirulence, Cell Elongation, and Hyperflagellation in Pectobacterium wasabiae. PLoS ONE, 2013, 8, e54248.	1.1	19
15	Role and Regulation of the Flp/Tad Pilus in the Virulence of Pectobacterium atrosepticum SCRI1043 and Pectobacterium wasabiae SCC3193. PLoS ONE, 2013, 8, e73718.	1.1	53
16	Revised Phylogeny and Novel Horizontally Acquired Virulence Determinants of the Model Soft Rot Phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathogens, 2012, 8, e1003013.	2.1	93
17	Hcp2, a Secreted Protein of the Phytopathogen Pseudomonas syringae pv. Tomato DC3000, Is Required for Fitness for Competition against Bacteria and Yeasts. Journal of Bacteriology, 2012, 194, 4810-4822.	1.0	76
18	The Role of Secretion Systems and Small Molecules in Soft-Rot <i>Enterobacteriaceae</i>	3.5	217

The Role of Secretion Systems and Small Molecules in Soft-Rot <i>Entropy Pathogenicity. Annual Review of Phytopathology, 2012, 50, 425-449. bacteriaceae</i> 18

Minna Pirhonen

#	Article	IF	CITATIONS
19	<i>Dickeya</i> species: an emerging problem for potato production in Europe. Plant Pathology, 2011, 60, 385-399.	1.2	383
20	Symptoms and yield reduction caused by Dickeya spp. strains isolated from potato and river water in Finland. European Journal of Plant Pathology, 2010, 126, 249-262.	0.8	76
21	Characterization of Dickeya strains isolated from potato and river water samples in Finland. European Journal of Plant Pathology, 2008, 122, 213-225.	0.8	119
22	Microarray profiling of host-extract-induced genes and characterization of the type VI secretion cluster in the potato pathogen Pectobacterium atrosepticum. Microbiology (United Kingdom), 2008, 154, 2387-2396.	0.7	53
23	Distinguishing bacterial pathogens of potato using a genomeâ€wide microarray approach. Molecular Plant Pathology, 2008, 9, 705-717.	2.0	21
24	Hostâ€extract induced changes in the secretome of the plant pathogenic bacterium <i>Pectobacterium atrosepticum</i> . Proteomics, 2007, 7, 3527-3537.	1.3	99
25	Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Molecular Biology, 2007, 64, 371-386.	2.0	189
26	AtPTR3, a wound-induced peptide transporter needed for defence against virulent bacterial pathogens in Arabidopsis. Planta, 2007, 225, 1431-1445.	1.6	78
27	Moss-Erwinia pathosystem reveals possible similarities in pathogenesis and pathogen defense in vascular and nonvascular plants. Journal of General Plant Pathology, 2005, 71, 23-28.	0.6	41
28	Structural and functional characterization of AtPTR3, a stress-induced peptide transporter of Arabidopsis. Journal of Molecular Modeling, 2005, 11, 226-236.	0.8	43
29	Identification and Characterization of Nip, Necrosis-Inducing Virulence Protein of Erwinia carotovora subsp. carotovora. Molecular Plant-Microbe Interactions, 2004, 17, 1366-1375.	1.4	103
30	Control of virulence gene expression by plant calcium in the phytopathogen Erwinia carotovora. Molecular Microbiology, 1997, 25, 831-838.	1.2	49
31	A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora EMBO Journal, 1993, 12, 2467-2476.	3.5	399
32	A small diffusible signal molecule is responsible for the global control of virulence and exoenzyme production in the plant pathogen Erwinia carotovora. EMBO Journal, 1993, 12, 2467-76.	3.5	182
33	Expression of pehA-bla gene fusions in Erwinia carotovora subsp. carotovora and isolation of regulatory mutants affecting polygalacturonase production. Molecular Genetics and Genomics, 1992, 234, 81-88.	2.4	28
34	Molecular cloning of ompRS, a regulatory locus controlling production of outer membrane proteins in Erwinia carotovora subsp. carotovora. Molecular Genetics and Genomics, 1991, 226, 353-360.	2.4	10
35	Identification of Pathogenicity Determinants of <i>Erwinia carotovora</i> subsp. <i>carotovora</i> by Transposon Mutagenesis. Molecular Plant-Microbe Interactions, 1991, 4, 276.	1.4	123
36	Occurrence of bacteriophage T4 receptor in Erwinia carotovora. Molecular Genetics and Genomics, 1988, 214, 170-172.	2.4	30

#	Article	IF	CITATIONS
37	Bacteriophage T4 resistant mutants of the plant pathogen Erwinia carotovora. Microbial Pathogenesis, 1988, 4, 359-367.	1.3	62